Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Marc Brysbaert
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (9): 1442–1452.
Published: 01 September 2013
FIGURES
| View All (4)
Abstract
View article
PDF
We can read words at an amazing speed, with the left hemisphere taking the burden of the processing in most readers (i.e., over 95% of right-handers and about 75% of left-handers). Yet, it is a long-standing question whether word reading in central vision is possible without information transfer between the left and right hemispheres (LH/RH). Here we show that such communication is required by comparing word naming latencies and eye movement data of people with LH language dominance and a unique sample of healthy RH dominant people. The results reveal that individuals with LH speech dominance name words faster when they are allowed to fixate at the word beginning, whereas RH dominants are faster for fixations toward the end. In text reading, the eyes of LH dominants land more to the left than the eyes of RH dominants, making more information directly available to the dominant hemisphere. We conclude that the traditional view of bilateral projections in central vision is incorrect. In contrast, interhemispheric communication is needed in central vision, and eye movements are adjusted to optimize information uptake. Our findings therefore call into question the explanation of macular sparing in hemianopia based on a bilaterally projecting fovea. In addition, these results are in line with the increase of white matter in the splenium of the corpus callosum when people learn to read.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (9): 1477–1492.
Published: 01 September 2013
FIGURES
| View All (7)
Abstract
View article
PDF
Among brain functions, language is one of the most lateralized. Cortical language areas are also some of the most asymmetrical in the brain. An open question is whether the asymmetry in function is linked to the asymmetry in anatomy. To address this question, we measured anatomical asymmetry in 34 participants shown with fMRI to have language dominance of the left hemisphere (LLD) and 21 participants shown to have atypical right hemisphere dominance (RLD). All participants were healthy and left-handed, and most (80%) were female. Gray matter (GM) volume asymmetry was measured using an automated surface-based technique in both ROIs and exploratory analyses. In the ROI analysis, a significant difference between LLD and RLD was found in the insula. No differences were found in planum temporale (PT), pars opercularis (POp), pars triangularis (PTr), or Heschl's gyrus (HG). The PT, POp, insula, and HG were all significantly left lateralized in both LLD and RLD participants. Both the positive and negative ROI findings replicate a previous study using manually labeled ROIs in a different cohort [Keller, S. S., Roberts, N., Garcia-Finana, M., Mohammadi, S., Ringelstein, E. B., Knecht, S., et al. Can the language-dominant hemisphere be predicted by brain anatomy? Journal of Cognitive Neuroscience, 23, 2013–2029, 2011]. The exploratory analysis was accomplished using a new surface-based registration that aligns cortical folding patterns across both subject and hemisphere. A small but significant cluster was found in the superior temporal gyrus that overlapped with the PT. A cluster was also found in the ventral occipitotemporal cortex corresponding to the visual word recognition area. The surface-based analysis also makes it possible to disentangle the effects of GM volume, thickness, and surface area while removing the effects of curvature. For both the ROI and exploratory analyses, the difference between LLD and RLD volume laterality was most strongly driven by differences in surface area and not cortical thickness. Overall, there were surprisingly few differences in GM volume asymmetry between LLD and RLD indicating that gross morphometric asymmetry is only subtly related to functional language laterality.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (4): 672–681.
Published: 01 April 2008
Abstract
View article
PDF
The brain areas involved in visual word processing rapidly become lateralized to the left cerebral hemisphere. It is often assumed this is because, in the vast majority of people, cortical structures underlying language production are lateralized to the left hemisphere. An alternative hypothesis, however, might be that the early stages of visual word processing are lateralized to the left hemisphere because of intrinsic hemispheric differences in processing low-level visual information as required for distinguishing fine-grained visual forms such as letters. If the alternative hypothesis was correct, we would expect posterior occipito-temporal processing stages still to be lateralized to the left hemisphere for participants with right hemisphere dominance for the frontal lobe processes involved in language production. By analyzing event-related potentials of native readers of French with either left hemisphere or right hemisphere dominance for language production (determined using a verb generation task), we were able to show that the posterior occipito-temporal areas involved in visual word processing are lateralized to the same hemisphere as language production. This finding could suggest top-down influences in the development of posterior visual word processing areas.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (8): 1373–1387.
Published: 01 August 2007
Abstract
View article
PDF
The left cerebral hemisphere is dominant for language processing in most individuals. It has been suggested that this asymmetric language representation can influence behavioral performance in foveal word-naming tasks. We carried out two experiments in which we obtained laterality indices by means of functional imaging during a mental word-generation task, using functional transcranial Doppler sonography and functional magnetic resonance imaging, respectively. Subsequently, we administered a behavioral word-naming task, where participants had to name foveally presented words of different lengths shown in different fixation locations shifted horizontally across the screen. The optimal viewing position for left language dominant individuals is located between the beginning and the center of a word. It is shifted toward the end of a word for right language dominant individuals and, to a lesser extent, for individuals with bilateral language representation. These results demonstrate that interhemispheric communication is required for foveal word recognition. Consequently, asymmetric representations of language and processes of interhemispheric transfer should be taken into account in theoretical models of visual word recognition to ensure neurological plausibility.