Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Marc D. Hauser
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (9): 1471–1482.
Published: 01 September 2005
Abstract
View article
PDF
Neurophysiological studies in nonhuman primates have demonstrated that the prefrontal cortex (PFC) plays a critical role in the acquisition of learned categories following training. What is presently unclear is whether this cortical area also plays a role in spontaneous recognition and discrimination of natural categories. Here, we explore this possibility by recording from neurons in the PFC while rhesus listen to species-specific vocalizations that vary in terms of their social function and acoustic morphology. We found that ventral prefrontal cortex (vPFC) activity, on average, did not differentiate between food calls that were associated with the same functional category, despite having different acoustic properties. In contrast, vPFC activity differentiated between food calls associated with different functional classes and specifically, information about the quality and motivational value of the food. These results suggest that the vPFC is involved in the categorization of socially meaningful signals, thereby both extending its previously conceived role in the acquisition of learned categories and showing the significance of using natural categorical distinctions in the study of neural mechanisms.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (1): 44–58.
Published: 01 January 2001
Abstract
View article
PDF
Visual object representation was studied in free-ranging rhesus monkeys. To facilitate comparison with humans, and to provide a new tool for neurophysiologists, we used a looking time procedure originally developed for studies of human infants. Monkeys' looking times were measured to displays with one or two distinct objects, separated or together, stationary or moving. Results indicate that rhesus monkeys used featural information to parse the displays into distinct objects, and they found events in which distinct objects moved together more novel or unnatural than events in which distinct objects moved separately. These findings show both common-alities and contrasts with those obtained from human infants. We discuss their implications for the development and neural mechanisms of higher-level vision.