Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Marc M. Van Hulle
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (3): 381–392.
Published: 01 March 2018
FIGURES
| View All (4)
Abstract
View article
PDF
Modern multivariate methods have enabled the application of unsupervised techniques to analyze neurophysiological data without strict adherence to predefined experimental conditions. We demonstrate a multivariate method that leverages priming effects on the evoked potential to perform hierarchical clustering on a set of word stimuli. The current study focuses on the semantic relationships that play a key role in the organization of our mental lexicon of words and concepts. The N400 component of the event-related potential is considered a reliable neurophysiological response that is indicative of whether accessing one concept facilitates subsequent access to another (i.e., one “primes” the other). To further our understanding of the organization of the human mental lexicon, we propose to utilize the N400 component to drive a clustering algorithm that can uncover, given a set of words, which particular subsets of words show mutual priming. Such a scheme requires a reliable measurement of the amplitude of the N400 component without averaging across many trials, which was here achieved using a recently developed multivariate analysis method based on beamforming. We validated our method by demonstrating that it can reliably detect, without any prior information about the nature of the stimuli, a well-known feature of the organization of our semantic memory: the distinction between animate and inanimate concepts. These results motivate further application of our method to data-driven exploration of disputed or unknown relationships between stimuli.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (2): 190–200.
Published: 15 February 2001
Abstract
View article
PDF
In order to understand how the brain codes natural categories, e.g., trees and fish, recordings were made in the anterior part of the macaque inferior temporal (IT) cortex while the animal was performing a tree/nontree categorization task. Most single cells responded to exemplars of more than one category while other neurons responded only to a restricted set of exemplars of a given category. Since it is still not known which type of cells contribute and what is the nature of the code used for categorization in IT, we have performed an analysis on single-cell data. A Kohonen self-organizing map (SOM), which uses an unsupervised (competitive) learning algorithm, was used to study the single cell responses to tree and nontree images. Results from the Kohonen SOM indicated that the collected neuronal data consisting of spike counts was sufficient to account for a good level of categorization success (approximately 83%) when categorizing a group of 200 trees and nontrees. Contrary to intuition, the results of the investigation suggest that the population of category-specific neurons (neurons that respond only to trees or only to nontrees) was unimportant to the categorization. Instead, a large majority of the neurons that were most important to the categorization was found to belong to a class of more broadly tuned cells, namely, cells that responded to both categories but that favored one category over the other by seven or more images. A simple algebraic operation (without the Kohonen SOM) between the above-mentioned noncategory-specific neurons confirmed the contribution of these neurons to categorization. Thus, the modeling results suggest (1) that broadly tuned neurons are critical for categorization, and (2) that only one additional layer of processing is required to extract the categories from a population of IT neurons.