Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-8 of 8
Marcel Brass
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (3): 522–533.
Published: 01 March 2024
FIGURES
| View All (4)
Abstract
View article
PDF
Classical conditioning states that the systematic co-occurrence of a neutral stimulus with an unconditioned stimulus can cause the neutral stimulus to, over time, evoke the same response as the unconditioned stimulus. On a neural level, Hebbian learning suggests that this type of learning occurs through changes in synaptic plasticity when two neurons are simultaneously active, resulting in increased connectivity between them. Inspired by associative learning theories, we here investigated whether the mere co-activation of visual stimuli and stimulation of the primary motor cortex using TMS would result in stimulus–response associations that can impact future behavior. During a learning phase, we repeatedly paired the presentation of a specific color (but not other colors) with a TMS pulse over the motor cortex. Next, participants performed a two-alternative forced-choice task where they had to categorize simple shapes and we studied whether the shapes' task-irrelevant color (and its potentially associated involuntary motor activity) affected the required motor response. Participants showed more errors on incongruent trials for stimuli that were previously paired with high intensity TMS pulses, but only when tested on the same day. Using a drift diffusion model for conflict tasks, we further demonstrate that this interference occurred early, and gradually increased as a function of associated TMS intensity. Taken together, our findings show that the human brain can learn stimulus–response associations using externally induced motor cortex stimulation. Although we were inspired by the Hebbian learning literature, future studies should investigate whether Hebbian or other learning processes were also what brought about this effect.
Journal Articles
Metacognitive Awareness of Difficulty in Action Selection: The Role of the Cingulo-opercular Network
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (12): 2512–2522.
Published: 05 November 2021
FIGURES
| View All (5)
Abstract
View article
PDF
The question whether and how we are able to monitor our own cognitive states (metacognition) has been a matter of debate for decades. Do we have direct access to our cognitive processes, or can we only infer them indirectly based on their consequences? In the current study, we wanted to investigate the brain circuits that underlie the metacognitive experience of fluency in action selection. To manipulate action-selection fluency, we used a subliminal response priming paradigm. On each trial, both male and female human participants additionally engaged in the metacognitive process of rating how hard they felt it was to respond to the target stimulus. Despite having no conscious awareness of the prime, results showed that participants rated incompatible trials (during which subliminal primes interfered with the required response) to be more difficult than compatible trials (where primes facilitated the required response), reflecting metacognitive awareness of difficulty. This increased sense of subjective difficulty was mirrored by increased activity in the rostral cingulate zone and the anterior insula, two regions that are functionally closely connected. Importantly, this reflected activations that were unique to subjective difficulty ratings and were not explained by RTs or prime–response compatibility. We interpret these findings in light of a possible grounding of the metacognitive judgment of fluency in action selection in interoceptive signals resulting from increased effort.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (8): 1170–1184.
Published: 01 August 2018
FIGURES
| View All (7)
Abstract
View article
PDF
Verbal instructions are central to humans' capacity to learn new behaviors with minimal training, but the neurocognitive mechanisms involved in verbally instructed behaviors remain puzzling. Recent functional magnetic resonance imaging (fMRI) evidence suggests that the right middle frontal gyrus and dorsal premotor cortex (rMFG-dPMC) supports the translation of symbolic stimulus–response mappings into sensorimotor representations. Here, we set out to (1) replicate this finding, (2) investigate whether this region's involvement is specific to novel (vs. trained) instructions, and (3) study whether rMFG-dPMC also shows differences in its (voxel) pattern response indicative of general cognitive processes of instruction implementation. Participants were shown instructions, which they either had to perform later or merely memorize. Orthogonal to this manipulation, the instructions were either entirely novel or had been trained before the fMRI session. Results replicate higher rMFG-dPMC activation levels during instruction implementation versus memorization and show how this difference is restricted to novel, but not trained, instruction presentations. Pattern similarity analyses at the voxel level further reveal more consistent neural pattern responses in rMFG-dPMC during the implementation of novel versus trained instructions. In fact, this more consistent neural pattern response seemed to be specific to the first instruction presentation and disappeared after the instruction had been applied once. These results further support a role of rMFG-dPMC in the implementation of novel task instructions and highlight potentially important differences in studying this region's gross activation levels versus (the consistency of) its response patterns.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (9): 1752–1765.
Published: 01 September 2015
FIGURES
| View All (4)
Abstract
View article
PDF
Controlling multiple languages during speech production is believed to rely on functional mechanisms that are (at least partly) shared with domain-general cognitive control in early, highly proficient bilinguals. Recent neuroimaging results have indeed suggested a certain degree of neural overlap between language control and nonverbal cognitive control in bilinguals. However, this evidence is only indirect. Direct evidence for neural overlap between language control and nonverbal cognitive control can only be provided if two prerequisites are met: Language control and nonverbal cognitive control should be compared within the same participants, and the task requirements of both conditions should be closely matched. To provide such direct evidence for the first time, we used fMRI to examine the overlap in brain activation between switch-specific activity in a linguistic switching task and a closely matched nonlinguistic switching task, within participants, in early, highly proficient Spanish–Basque bilinguals. The current findings provide direct evidence that, in these bilinguals, highly similar brain circuits are involved in language control and domain-general cognitive control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (5): 855–865.
Published: 01 May 2007
Abstract
View article
PDF
The interaction between language and action systems has become an increasingly interesting topic of discussion in cognitive neuroscience. Several recent studies have shown that processing of action verbs elicits activation in the cerebral motor system in a somatotopic manner. The current study extends these findings to show that the brain responses for processing of verbs with specific motor meanings differ not only from that of other motor verbs, but, crucially, that the comprehension of verbs with motor meanings (i.e., greifen , to grasp) differs fundamentally from the processing of verbs with abstract meanings (i.e., denken , to think). Second, the current study investigated the neural correlates of processing morphologically complex verbs with abstract meanings built on stems with motor versus abstract meanings (i.e., begreifen , to comprehend vs. bedenken , to consider). Although residual effects of motor stem meaning might have been expected, we see no evidence for this in our data. Processing of morphologically complex verbs built on motor stems showed no differences in involvement of the motor system when compared with processing complex verbs with abstract stems. Complex verbs built on motor stems did show increased activation compared with complex verbs built on abstract stems in the right posterior temporal cortex. This result is discussed in light of the involvement of the right temporal cortex in comprehension of metaphoric or figurative language.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (3): 388–398.
Published: 01 March 2006
Abstract
View article
PDF
In everyday life, we have to selectively adapt our behavior to different situations and tasks. In cognitive psychology, such adaptive behavior can be investigated with the task-switching paradigm. However, in contrast to everyday life, in experiments participants are unequivocally told which task to perform. The present functional magnetic resonance imaging (fMRI) study was set out to investigate processes that are relevant when participants can decide by their own which task to perform. The number of tasks to choose from was varied between a forced condition (no choice) and two voluntary selection conditions (two or three choices). We expected to find prolonged reaction times as well as higher activations within the midcingulate cortex for the choice conditions compared to the no-choice condition. The fMRI results revealed a significant activation difference for the choice conditions versus the no-choice condition. For the choice contrast, activation was found in the rostral cingulate zone (RCZ) as well as the superior parietal lobule and the posterior part of the intraparietal sulcus. These activations revealed no selection-specific difference between three and two choices. Finally, a post hoc analysis showed that the activation in the RCZ is not associated with higher task-dependent response conflict when participants can select a task set. Taken together, these findings indicate that distinct brain areas are involved in the voluntary selection of abstract task set information.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (9): 1367–1375.
Published: 01 September 2005
Abstract
View article
PDF
Cognitive control processes enable us to adjust our behavior to changing environmental demands. Although neuropsychological studies suggest that the critical cortical region for cognitive control is the prefrontal cortex, neuro-imaging studies have emphasized the interplay of prefrontal and parietal cortices. This raises the fundamental question about the different contributions of prefrontal and parietal areas in cognitive control. It was assumed that the prefrontal cortex biases processing in posterior brain regions. This assumption leads to the hypothesis that neural activity in the prefrontal cortex should precede parietal activity in cognitive control. The present study tested this assumption by combining results from functional magnetic resonance imaging (fMRI) providing high spatial resolution and event-related potentials (ERPs) to gain high temporal resolution. We collected ERP data using a modified task-switching paradigm. In this paradigm, a situation where the same task was indicated by two different cues was compared with a situation where two cues indicated different tasks. Only the latter condition required updating of the task set. Task-set updating was associated with a midline negative ERP deflection peaking around 470 msec. We placed dipoles in regions activated in a previous fMRI study that used the same paradigm (left inferior frontal junction, right inferior frontal gyrus, right parietal cortex) and fitted their directions and magnitudes to the ERP effect. The frontal dipoles contributed to the ERP effect earlier than the parietal dipole, providing support for the view that the prefrontal cortex is involved in updating of general task representations and biases relevant stimulus-response associations in the parietal cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (4): 609–620.
Published: 01 May 2004
Abstract
View article
PDF
It is widely acknowledged that the prefrontal cortex plays a major role in cognitive control processes. One important experimental paradigm for investigating such higher order cognitive control is the task-switching paradigm. This paradigm investigates the ability to switch flexibly between different task situations. In this context, it has been found that participants are able to anticipatorily prepare an upcoming task. This ability has been assumed to reflect endogenous cognitive control. However, it is difficult to isolate task preparation process from task execution using functional magnetic resonance imaging (fMRI). In the present study, we introduce a new experimental manipulation to investigate task preparation with fMRI. By manipulating the number of times a task was prepared, we could demonstrate that the left inferior frontal junction (IFJ) area (near the junction of inferior frontal sulcus and inferior precentral sulcus), the right inferior frontal gyrus, and the right intraparietal sulcus are involved in task preparation. By manipulating the cue-task mapping, we could further show that this activation is not related to cue encoding but to the updating of the relevant task representation. Based on these and previous results, we assume that the IFJ area constitutes a functionally separable division of the lateral prefrontal cortex. Finally, our data suggest that task preparation does not differ for switch and repetition trials in paradigms with a high proportion of switch trials, casting doubt on the assumption that an independent task set reconfiguration process takes place in the preparation interval.