Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-11 of 11
Marcia K. Johnson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (9): 1823–1839.
Published: 01 September 2015
FIGURES
| View All (8)
Abstract
View article
PDF
Refreshing is the component cognitive process of directing reflective attention to one of several active mental representations. Previous studies using fMRI suggested that refresh tasks involve a component process of initiating refreshing as well as the top–down modulation of representational regions central to refreshing. However, those studies were limited by fMRI's low temporal resolution. In this study, we used EEG to examine the time course of refreshing on the scale of milliseconds rather than seconds. ERP analyses showed that a typical refresh task does have a distinct electrophysiological response as compared to a control condition and includes at least two main temporal components: an earlier (∼400 msec) positive peak reminiscent of a P3 response and a later (∼800–1400 msec) sustained positivity over several sites reminiscent of the late directing attention positivity. Overall, the evoked potentials for refreshing representations from three different visual categories (faces, scenes, words) were similar, but multivariate pattern analysis showed that some category information was nonetheless present in the EEG signal. When related to previous fMRI studies, these results are consistent with a two-phase model, with the first phase dominated by frontal control signals involved in initiating refreshing and the second by the top–down modulation of posterior perceptual cortical areas that constitutes refreshing a representation. This study also lays the foundation for future studies of the neural correlates of reflective attention at a finer temporal resolution than is possible using fMRI.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (12): 2813–2822.
Published: 01 December 2010
FIGURES
Abstract
View article
PDF
Constructing a rich and coherent visual experience involves maintaining visual information that is not perceptually available in the current view. Recent studies suggest that briefly thinking about a stimulus ( refreshing ) can modulate activity in category-specific visual areas. Here, we tested the nature of such perceptually refreshed representations in the parahippocampal place area (PPA) and retrosplenial cortex (RSC) using fMRI. We asked whether a refreshed representation is specific to a restricted view of a scene, or more view-invariant. Participants saw a panoramic scene and were asked to think back to (refresh) a part of the scene after it disappeared. In some trials, the refresh cue appeared twice on the same side (e.g., refresh left–refresh left), and other trials, the refresh cue appeared on different sides (e.g., refresh left–refresh right). A control condition presented halves of the scene twice on same sides (e.g., perceive left–perceive left) or different sides (e.g., perceive left–perceive right). When scenes were physically repeated, both the PPA and RSC showed greater activation for the different-side repetition than the same-side repetition, suggesting view-specific representations. When participants refreshed scenes, the PPA showed view-specific activity just as in the physical repeat conditions, whereas RSC showed an equal amount of activation for different- and same-side conditions. This finding suggests that in RSC, refreshed representations were not restricted to a specific view of a scene, but extended beyond the target half into the entire scene. Thus, RSC activity associated with refreshing may provide a mechanism for integrating multiple views in the mind.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (12): 2320–2327.
Published: 01 December 2009
Abstract
View article
PDF
Recent research has demonstrated top–down attentional modulation of activity in extrastriate category-selective visual areas while stimuli are in view (perceptual attention) and after they are removed from view (reflective attention). Perceptual attention is capable of both enhancing and suppressing activity in category-selective areas relative to a passive viewing baseline. In this study, we demonstrate that a brief, simple act of reflective attention (“refreshing”) is also capable of both enhancing and suppressing activity in some scene-selective areas (the parahippocampal place area [PPA]) but not others (refreshing resulted in enhancement but not in suppression in the middle occipital gyrus [MOG]). This suggests that different category-selective extrastriate areas preferring the same class of stimuli may contribute differentially to reflective processing of one's internal representations of such stimuli.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (10): 1934–1945.
Published: 01 October 2009
Abstract
View article
PDF
Our environment contains regularities distributed in space and time that can be detected by way of statistical learning. This unsupervised learning occurs without intent or awareness, but little is known about how it relates to other types of learning, how it affects perceptual processing, and how quickly it can occur. Here we use fMRI during statistical learning to explore these questions. Participants viewed statistically structured versus unstructured sequences of shapes while performing a task unrelated to the structure. Robust neural responses to statistical structure were observed, and these responses were notable in four ways: First, responses to structure were observed in the striatum and medial temporal lobe, suggesting that statistical learning may be related to other forms of associative learning and relational memory. Second, statistical regularities yielded greater activation in category-specific visual regions (object-selective lateral occipital cortex and word-selective ventral occipito-temporal cortex), demonstrating that these regions are sensitive to information distributed in time. Third, evidence of learning emerged early during familiarization, showing that statistical learning can operate very quickly and with little exposure. Finally, neural signatures of learning were dissociable from subsequent explicit familiarity, suggesting that learning can occur in the absence of awareness. Overall, our findings help elucidate the underlying nature of statistical learning.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (8): 1371–1380.
Published: 01 August 2008
Abstract
View article
PDF
Cognition constantly involves retrieving and maintaining information that is not perceptually available in the current environment. Studies on visual imagery and working memory suggest that such high-level cognition might, in part, be mediated by the revival of perceptual representations in the inferior temporal cortex. Here, we provide new support for this hypothesis, showing that reflectively accessed information can have similar consequences for subsequent perception as actual perceptual input. Participants were presented with pairs of frames in which a scene could appear, and were required to make a category judgment on the second frame. In the critical condition, a scene was presented in the first frame, but the second frame was blank. Thus, it was necessary to refresh the scene from the first frame in order to make the category judgment. Scenes were then repeated in subsequent trials to measure the effect of refreshing on functional magnetic resonance imaging repetition attenuation—a neural index of memory—in a scene-selective region of the visual cortex. Surprisingly, the refreshed scenes produced equal attenuation as scenes that had been presented twice during encoding, and more attenuation than scenes that had been presented once during encoding, but that were not refreshed. Thus, the top-down revival of a percept had a similar effect on memory as actually seeing the stimulus again. These findings indicate that high-level cognition can activate stimulus-specific representations in the ventral visual cortex, and that such top-down activation, like that from sensory stimulation, produces memorial changes that affect perceptual processing during a later encounter with the stimulus.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (5): 852–862.
Published: 01 May 2008
Abstract
View article
PDF
We explored age-related differences in executive function during selection of a target from among active representations. Refreshing (thinking briefly of a just-activated representation) is an executive process that foregrounds a target relative to other active representations. In a behavioral study, participants saw one or three words, then saw a cue to refresh one of the words, saw one word again and read it, or read a new word. Increasing the number of active representations increased response times (RTs) only in the refresh condition for young adults but increased RTs equally in all conditions for older adults, suggesting that they experienced interference from activated irrelevant information during perception and reflection. Consistent with this interpretation, in a functional magnetic resonance imaging study, young adults showed two areas of the left dorsolateral frontal cortex and a medial area of frontal cortex, including anterior cingulate, that were relatively more sensitive to number of active representations during refresh than read trials; for older adults these areas were equally sensitive to number of active items for refresh and read trials. Young and older adults showed activity associated with refreshing on trials requiring selection in left mid-ventral frontal cortex (an area associated with selection from active representations); older adults also showed activity in left anterior ventral frontal cortex (an area associated with controlled semantic activation). Our results support the hypothesis of an age-related decrease in ability to gate out activated but currently irrelevant information, and are consistent with a dissociation of function between eft mid-ventral and left anterior ventral frontal cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (4): 614–625.
Published: 01 April 2006
Abstract
View article
PDF
To investigate whether emotional arousal affects memorial feature binding, we had participants complete a short-term source-monitoring task—remembering the locations of four different pictures over a brief delay. On each trial, the four pictures were all either high arousal, medium arousal, or low arousal. Memory for picture-location conjunctions decreased as arousal increased. In addition, source memory for the location of negative pictures was worse among participants with higher depression scores. Two subsequent functional magnetic resonance imaging experiments showed that relative to low-arousal trials, high- and medium-arousal trials resulted in greater activity in areas associated with visual processing (fusiform gyrus, middle temporal gyrus/middle occipital gyrus, lingual gyrus) and less activity in superior precentral gyrus and the precentral-superior temporal intersect. These findings suggest that arousal (and perhaps negative valence for depressed people) recruits attention to items thereby disrupting working memory processes that help bind features together.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (10): 1717–1729.
Published: 01 December 2004
Abstract
View article
PDF
Previous work suggests that explicit and implicit evaluations (good–bad) involve somewhat different neural circuits that process different dimensions such as valence, emotional intensity, and complexity. To better understand these differences, we used functional magnetic resonance imaging to identify brain regions that respond differentially to such dimensions depending on whether or not an explicit evaluation is required. Participants made either good–bad judgments (evaluative) or abstract–concrete judgments (not explicitly evaluative) about socially relevant concepts (e.g., “murder,” “happiness,” “abortion,” “welfare”). After scanning, participants rated the concepts for goodness, badness, emotional intensity, and how much they tried to control their evaluation of the concept. Amygdala activation correlated with emotional intensity and right insula activation correlated with valence in both tasks, indicating that these aspects of stimuli were processed by these areas regardless of intention. In contrast, for the explicitly evaluative good–bad task only, activity in the anterior cingulate, frontal pole, and lateral areas of the orbital frontal cortex correlated with ratings of control, which in turn were correlated with a measure of ambivalence. These results highlight that evaluations are the consequence of complex circuits that vary depending on task demands.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (6): 921–934.
Published: 01 July 2004
Abstract
View article
PDF
Using functional magnetic resonance imaging (fMRI), we investigated prefrontal cortex (PFC) activity during remembering specific source information (format, location judgments) versus remembering that could be based on undifferentiated information, such as familiarity (old/new recognition [ON], recency judgments). A working memory (WM) paradigm with an immediate test yielded greater activation in the lateral PFC for format and location source memory (SM) tasks than ON recognition; this SM-related activity was left lateralized. The same regions of PFC were recruited in Experiment 2 when information was tested immediately and after a filled delay. Substituting recency for location judgments (Experiment 3) resulted in an overall shift in task context that produced greater right PFC activity associated with ON and recency tasks compared to the format task, in addition to left SM-related activity. These data extend to WM previous findings from long-term memory (LTM) indicating that the left and right PFC may be differentially involved in memory attributions depending on the specificity of information evaluated. The findings also provide evidence for the continuity of evaluative processes recruited in WM and LTM.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (2): 201–216.
Published: 15 February 2001
Abstract
View article
PDF
People often falsely recognize nonstudied lures that are semantically similar to previously studied words. Behavioral research suggests that such false recognition is based on high semantic overlap between studied items and lures that yield a feeling of familiarity, whereas true recognition is more often associated with the recollection of details. Despite this behavioral evidence for differences between true and false recognition, research measuring brain activity (PET, fMRI, ERP) has not clearly differentiated corresponding differences in brain activity. A median split was used to separate subjects into Good and Poor performers based on their discrimination of studied targets from similar lures. Only Good performers showed late (1000-1500 msec), right frontal event-related brain potentials (ERPs) that were more positive for targets and lures compared with new items. The right frontal differences are interpreted as reflecting postretrieval evaluation processes that were more likely to be engaged by Good than Poor performers. Both Good and Poor performers showed a parietal ERP old/new effect (400-800 msec), but only Poor performers showed a parietal old/lure difference. These results are consistent with the view that the parietal and frontal ERP old/new effects reflect dissociable processes related to recollection.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1992) 4 (3): 268–280.
Published: 01 July 1992
Abstract
View article
PDF
The MEM framework (Johnson, 1991a, b; Johnson & Hirst, 1992; Johnson & Multhaup, 1992) consists of a relatively small set of component cognitive processes configured into memory subsystems. Here MEM is used to discuss “recollection,” particularly the mechanisms by which aspects of experience become bound together to yield the phenomenal experience of contextually specific, event-like memories. I consider how central aspects of complex events are bound to each other and propose that these same cognitive activities operate to bind central and contextual elements into “episodic” memories. Attention is particularly focused on the role of reactivation in establishing complex memories and in strengthening or consolidating them over time.