Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-5 of 5
Marcus E. Raichle
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (Supplement 2): 24–34.
Published: 01 November 2000
Abstract
View article
PDF
Brain imaging based on functional MRI (fMRI) provides a powerful tool for characterizing age-related changes in functional anatomy. However, between-population comparisons confront potential differences in measurement properties. The present experiment explores the feasibility of conducting fMRI studies in nondemented and demented older adults by measuring hemodynamic response properties in an event-related design. A paradigm involving repeated presentation of sensory-motor response trials was administered to 41 participants (14 young adults, 14 nondemented older adults, and 13 demented older adults). For half of the trials a single sensory-motor event was presented in isolation and in the other half in pairs. Hemodynamic response characteristics to the isolated events allowed basic response properties (e.g., amplitude and variance) between subject groups to be contrasted. The paired events further allowed the summation properties of the hemodynamic response to be characterized. Robust and qualitatively similar activation maps were produced for all subject groups. Quantitative results showed that for certain regions, such as in the visual cortex, there were marked reductions in the amplitude of the hemodynamic response in older adults. In other regions, such as in the motor cortex, relatively intact response characteristics were observed. These results suggest caution should be exhibited in interpreting simple main effects in response amplitude between subject groups. However, across all regions examined, the summation of the hemodynamic response over trials was highly similar between groups. This latter finding suggests that, even if absolute measurement differences do exist between subject groups, relative activation change should be preserved. Designs that rely on group interactions between task conditions, parametric manipulations, or group interactions between regions should provide valuable data for making inferences about functional-anatomic changes between different populations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (Supplement 2): 157–170.
Published: 01 November 2000
Abstract
View article
PDF
The functional neuroanatomy of visual processing of surface features of emotionally valenced pictorial stimuli was examined in normal human subjects using functional magnetic resonance imaging (fMRI). Pictorial stimuli were of two types: emotionally negative and neutral pictures. Task performance was slower for the negatively valenced than for the neutral pictures. Significant blood oxygen level dependent (BOLD) increases occurred in the medial and dorsolateral prefrontal cortex, midbrain, substantia innominata, and/or amygdala, and in the posterior cortical visual areas for both stimulus types. Increases were greater for the negatively valenced stimuli. While there was a small but significant BOLD decrease in the subgenual prefrontal cortex, which was larger in response to the negatively valenced pictures, there was an almost complete absence of other decreases prominently seen during the performance of demanding cognitive tasks [Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, S. E. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9 , 648-663]. These results provide evidence that the emotional valence and arousing nature of stimuli used during the performance of an attention-demanding cognitive task are reflected in discernable, quantitative changes in the functional anatomy associated with task performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1997) 9 (5): 648–663.
Published: 01 October 1997
Abstract
View article
PDF
Nine previous positron emission tomography (PET) studies of human visual information processing were reanalyzed to determine the consistency across experiments of blood flow decreases during active tasks relative to passive viewing of the same stimulus array. Areas showing consistent decreases during active tasks included posterior cingulate/precuneous (Brodmann area, BA 31/7), left (BAS 40 and 39/19) and right (BA 40) inferior parietal cortex, left dorsolateral frontal cortex (BA S), left lateral inferior frontal cortex (BA 10/47), left inferior temporal gyrus @A 20), a strip of medial frontal regions running along a dorsal-ventral axis (BAs 8, 9, 10, and 32), and the right amygdala. Experiments involving language-related processes tended to show larger decreases than nonlanguage experiments. This trend mainly reflected blood flow increases at certain areas in the passive conditions of the language experiments (relative to a fixation control in which no task stimulus was present) and slight blood flow decreases in the passive conditions of the nonlanguage experiments. When the active tasks were referenced to the fixation condition, the overall size of blood flow decreases in language and nonlanguage tasks were the same, but differences were found across cortical areas. Decreases were more pronounced in the posterior cingulate/precuneous (BAS 31/7) and right inferior parietal cortex (BA 40) during language-related tasks and more pronounced in left inferior frontal cortex (BA 10/47) during nonlanguage tasks. Blood flow decreases did not generally show significant differences across the active task states within an experiment, but a verb-generation task produced larger decreases than a read task in right and left inferior parietal lobe (BA 40) and the posterior cingulate/precuneous (BA 31/7), while the read task produced larger decreases in left lateral inferior frontal cortex (BA 10/47). These effects mirrored those found between experiments in the language-nonlanguage comparison. Consistent active minus passive decreases may reflect decreased activity caused by active task processes that generalize over tasks or increased activity caused by passive task processes that are suspended during the active tasks. Increased activity during the passive condition might reflect ongoing processes, such as unconstrained verbally mediated thoughts and monitoring of the external environment, body, and emotional state.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1997) 9 (5): 624–647.
Published: 01 October 1997
Abstract
View article
PDF
Nine positron emission tomography (PET) studies of human visual information processing were reanalyzed to determine the consistency across experiments of blood flow increases during active tasks relative to passive viewing of the same stimulus array. No consistent blood flow increases were found in cerebral cortex outside of the visual system, but increases were seen in the thalamus and cerebellum. Although most tasks involve increases in arousal, establishing an intention or behavioral goal, setting up control structures for sequencing task operations, detecting targets, etc., these operations do not produce blood flow increases, detectable with the present methods, in localized cortical regions that are common across tasks. Common subcortical regions, however, may be involved. A left cerebellar and a medial cerebellar focus reflected motor-related processes. Blood flow increases in these regions only occurred in experiments in which the subject made an overt response and were largest when the response was made in the active but not passive condition. These motor-related processes were more complex than simple motor execution, however, since increases were still present when the response was made in both the active and passive conditions. These cerebellar increases may reflect processes related to response selection.Blood flow increases in a right cerebellar region were not motor-related. Increases were not modulated by the presence or absence of motor responses during either the active or passive conditions, and increases were sensitive to within-experiment variables that held the motor response constant. Increases occurred in both language and nonlanguage tasks and appeared to involve a general nonmotor process, but the nature of that process was difficult to specify. A right thalamic focus was sensitive to variables related to focal attention, suggesting that this region was involved in attentional engagement. Right thalamic increases were also correlated over conditions with increases in the left and medial cerebellum, perhaps reflecting additional contributions from motor-related nuclei receiving cerebellar projections. Blood flow increases in a left thalamic focus were completely uncorrelated over conditions with increases in the right thalamus, indicating that it was involved in different functions. Both the left thalamus and right cerebellum yielded larger blood flow increases when subjects performed a complex rather than simple language task, possibly reflecting a language-related pathway. Blood flow increases in the left thalamus were also observed, however, during nonlanguage tasks.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1989) 1 (2): 153–170.
Published: 01 April 1989
Abstract
View article
PDF
PET images of blood flow change that were averaged across individuals were used to identify brain areas related to lexical (single-word) processing, A small number of discrete areas were activated during several task conditions including: modality-specific (auditory or visual) areas activated by passive word input, primary motor and premotor areas during speech output, and yet further areas during tasks making semantic or intentional demands.