Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Maria Luisa Gorno-Tempini
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (6): 791–807.
Published: 01 June 2019
FIGURES
| View All (7)
Abstract
View article
PDF
Previous evidence from neuropsychological and neuroimaging studies suggests functional specialization for tools and related semantic knowledge in a left frontoparietal network. It is still debated whether these areas are involved in the representation of rudimentary movement-relevant knowledge regardless of semantic domains (animate vs. inanimate) or categories (tools vs. nontool objects). Here, we used fMRI to record brain activity while 13 volunteers performed two semantic judgment tasks on visually presented items from three different categories: animals, tools, and nontool objects. Participants had to judge two distinct semantic features: whether two items typically move in a similar way (e.g., a fan and a windmill move in circular motion) or whether they are usually found in the same environment (e.g., a seesaw and a swing are found in a playground). We investigated differences in overall activation (which areas are involved) as well as representational content (which information is encoded) across semantic features and categories. Results of voxel-wise mass univariate analysis showed that, regardless of semantic category, a dissociation emerges between processing information on prototypical location (involving the anterior temporal cortex and the angular gyrus) and movement (linked to left inferior parietal and frontal activation). Multivoxel pattern correlation analyses confirmed the representational segregation of networks encoding task- and category-related aspects of semantic processing. Taken together, these findings suggest that the left frontoparietal network is recruited to process movement properties of items (including both biological and nonbiological motion) regardless of their semantic category.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (2): 210–222.
Published: 01 February 2016
FIGURES
| View All (5)
Abstract
View article
PDF
Individuals with primary progressive aphasia (PPA) show selective breakdown in regions within the proposed dorsal (articulatory–phonological) and ventral (lexical–semantic) pathways involved in language processing. Phonological STM impairment, which has been attributed to selective damage to dorsal pathway structures, is considered to be a distinctive feature of the logopenic variant of PPA. By contrast, phonological abilities are considered to be relatively spared in the semantic variant and are largely unexplored in the nonfluent/agrammatic variant. Comprehensive assessment of phonological ability in the three variants of PPA has not been undertaken. We investigated phonological processing skills in a group of participants with PPA as well as healthy controls, with the goal of identifying whether patterns of performance support the dorsal versus ventral functional–anatomical framework and to discern whether phonological ability differs among PPA subtypes. We also explored the neural bases of phonological performance using voxel-based morphometry. Phonological performance was impaired in patients with damage to dorsal pathway structures (nonfluent/agrammatic and logopenic variants), with logopenic participants demonstrating particular difficulty on tasks involving nonwords. Binary logistic regression revealed that select phonological tasks predicted diagnostic group membership in the less fluent variants of PPA with a high degree of accuracy, particularly in conjunction with a motor speech measure. Brain–behavior correlations indicated a significant association between the integrity of gray matter in frontal and temporoparietal regions of the left hemisphere and phonological skill. Findings confirm the critical role of dorsal stream structures in phonological processing and demonstrate unique patterns of impaired phonological processing in logopenic and nonfluent/agrammatic variants of PPA.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (5): 970–985.
Published: 01 May 2014
FIGURES
| View All (7)
Abstract
View article
PDF
Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA; also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the ATLs is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA to determine which regions normally involved in syntactic processing are damaged in semantic PPA and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural MRI and fMRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that, in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, whereas anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the ATLs but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left ATL did show abnormal functionality in semantic PPA patients; however, this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the ATL in sentence processing is less likely to relate to syntactic structure-building and more likely to relate to higher-level processes such as combinatorial semantic processing.
Journal Articles
Neuroimaging Studies of Word and Pseudoword Reading: Consistencies, Inconsistencies, and Limitations
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (2): 260–271.
Published: 15 February 2003
Abstract
View article
PDF
Several functional neuroimaging studies have compared words and pseudowords to test different cognitive models of reading. There are difficulties with this approach, however, because cognitive models do not make clear-cut predictions at the neural level. Therefore, results can only be interpreted on the basis of prior knowledge of cognitive anatomy. Furthermore, studies comparing words and pseudowords have produced inconsistent results. The inconsistencies could reflect false-positive results due to the low statistical thresholds applied or confounds from nonlexical aspects of the stimuli. Alternatively, they may reflect true effects that are inconsistent across subjects; dependent on experimental parameters such as stimulus rate or duration; or not replicated across studies because of insufficient statistical power. In this fMRI study, we investigate consistent and inconsistent differences between word and pseudoword reading in 20 subjects, and distinguish between effects associated with increases and decreases in activity relative to fixation. In addition, the interaction of word type with stimulus duration is explored. We find that words and pseudowords activate the same set of regions relative to fixation, and within this system, there is greater activation for pseudowords than words in the left frontal operculum, left posterior inferior temporal gyrus, and the right cerebellum. The only effects of words relative to pseudowords consistent over subjects are due to decreases in activity for pseudowords relative to fixation; and there are no significant interactions between word type and stimulus duration. Finally, we observe inconsistent but highly significant effects of word type at the individual subject level. These results (i) illustrate that pseudowords place increased demands on areas that have previously been linked to lexical retrieval, and (ii) highlight the importance of including one or more baselines to qualify word type effects. Furthermore, (iii) they suggest that inconsistencies observed in the previous literature may result from effects arising from a small number of subjects only.