Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Marieke van der Linden
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (2): 319–333.
Published: 01 February 2014
FIGURES
| View All (10)
Abstract
View article
PDF
In this study, we bridge the gap between monkey electrophysiological recordings that showed selective responses to informative features and human fMRI data that demonstrated increased and selective responses to trained objects. Human participants trained with computer-generated fish stimuli. For each participant, two features of the fish were informative for category membership and two features were uninformative. After training, participants showed higher perceptual sensitivity to the informative dimensions. An fMRI adaptation paradigm revealed that during categorization the right inferior frontal gyrus and occipitotemporal cortex were selectively responsive to the informative features. These selective cortical responses were experience dependent; they were not present for the entire trained object, but specific for those features that were informative for categorization. Responses in the inferior frontal gyrus showed category selectivity. Moreover, selectivity to the informative features correlated with performance on the categorization task during scanning. This all suggests that the frontal cortex is involved in actively categorizing objects and that it uses informative features to do so while ignoring those features that do not contribute category information. Occipitotemporal cortex also showed selectivity to the informative features during the categorization task. Interestingly, this area showed a positive correlation of performance during training and selectivity to the informative features and a negative correlation with selectivity to the uninformative features. This indicates that training enhanced sensitivity to trained items and decreased sensitivity to uninformative features. The absence of sensitivity for informative features during a color change detection task indicates that there is a strong component of task-related processing of these features.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (6): 1315–1331.
Published: 01 June 2011
FIGURES
| View All (8)
Abstract
View article
PDF
The formation of cross-modal object representations was investigated using a novel paradigm that was previously successful in establishing unimodal visual category learning in monkeys and humans. The stimulus set consisted of six categories of bird shapes and sounds that were morphed to create different exemplars of each category. Subjects learned new cross-modal bird categories using a one-back task. Over time, the subjects became faster and more accurate in categorizing the birds. After 3 days of training, subjects were scanned while passively viewing and listening to trained and novel bird types. Stimulus blocks consisted of bird sounds only, bird pictures only, matching pictures and sounds (cross-modal congruent), and mismatching pictures and sounds (cross-modal incongruent). fMRI data showed unimodal and cross-modal training effects in the right fusiform gyrus. In addition, the left STS showed cross-modal training effects in the absence of unimodal training effects. Importantly, for both the right fusiform gyrus and the left STS, the newly formed cross-modal representation was specific for the trained categories. Learning did not generalize to incongruent combinations of learned sounds and shapes; their response did not differ from the response to novel cross-modal bird types. Moreover, responses were larger for congruent than for incongruent cross-modal bird types in the right fusiform gyrus and STS, providing further evidence that categorization training induced the formation of meaningful cross-modal object representations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (6): 1270–1282.
Published: 01 June 2010
FIGURES
| View All (6)
Abstract
View article
PDF
The human brain contains cortical areas specialized in representing object categories. Visual experience is known to change the responses in these category-selective areas of the brain. However, little is known about how category training specifically affects cortical category selectivity. Here, we investigated the experience-dependent formation of object categories using an fMRI adaptation paradigm. Outside the scanner, subjects were trained to categorize artificial bird types into arbitrary categories (jungle birds and desert birds). After training, neuronal populations in the occipito-temporal cortex, such as the fusiform and the lateral occipital gyrus, were highly sensitive to perceptual stimulus differences. This sensitivity was not present for novel birds, indicating experience-related changes in neuronal representations. Neurons in STS showed category selectivity. A release from adaptation in STS was only observed when two birds in a pair crossed the category boundary. This dissociation could not be explained by perceptual similarities because the physical difference between birds from the same side of the category boundary and between birds from opposite sides of the category boundary was equal. Together, the occipito-temporal cortex and the STS have the properties suitable for a system that can both generalize across stimuli and discriminate between them.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (3): 530–541.
Published: 01 March 2005
Abstract
View article
PDF
Oscillatory neuronal dynamics, observed in the human electroencephalogram (EEG) during language processing, have been related to the dynamic formation of functionally coherent networks that serve the role of integrating the different sources of information needed for understanding the linguistic input. To further explore the functional role of oscillatory synchrony during language processing, we quantified event-related EEG power changes induced by the presentation of open-class (OC) words and closed-class (CC) words in a wide range of frequencies (from 1 to 30 Hz), while subjects read a short story. Word presentation induced three oscillatory components: a theta power increase (4–7 Hz), an alpha power decrease (10– 12 Hz), and a beta power decrease (16–21 Hz). Whereas the alpha and beta responses showed mainly quantitative differences between the two word classes, the theta responses showed qualitative differences between OC words and CC words: A theta power increase was found over left temporal areas for OC words, but not for CC words. The left temporal theta increase may index the activation of a network involved in retrieving the lexical semantic properties of the OC items.