Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Marina Pavlovskaya
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (7): 1397–1411.
Published: 01 July 2015
FIGURES
| View All (9)
Abstract
View article
PDF
The syndrome of unilateral spatial neglect (USN) after right-hemisphere damage is characterized by failure of salient left-sided stimuli to activate an orienting response, attract attention, and gain access to conscious awareness. The explicit failure processing left-sided visual information is not uniform, however, and patients seem to be more successful performing certain visual tasks than others. The source of this difference is still not clear. We focus on processing of visual scene statistical properties, asking whether, in computing the average size of an array of objects, USN patients give appropriate weight to objects on the left; disregard left-side objects entirely; or assign them an intermediate, lower weight, in accord with their tendency to neglect these objects. The interest in testing this question stems from a series of studies in healthy individuals that led Chong and Treisman [Chong, S. C., & Treisman, A. Statistical processing: Computing the average size in perceptual groups. Vision Research, 45, 891–900, 2005a; Chong, S. C., & Treisman, A. Attentional spread in the statistical processing of visual displays. Perception & Psychophysics, 67, 1–13, 2005b] to propose that processing of statistical properties (like the average size of visual scene elements) is carried out in parallel, with no need for serial allocation of focal attention to the different scene elements. Our results corroborate this suggestion, showing that objects in the left (“neglected”) hemispace contribute to average size computation, despite a marked imbalance in spatial distribution of attention, which leads to a reduced weight of left-side elements in the averaging computation. This finding sheds light on the nature of the impairment in USN and on basic mechanisms underlying statistical processing in vision. We confirm that statistical processing depends mainly on spread-attention mechanisms, which are largely spared in USN.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (5): 745–756.
Published: 01 July 2002
Abstract
View article
PDF
We address two longstanding conflicts in the visual search and unilateral neglect literature by studying feature and conjunction search performance of neglect patients using laterally presented search arrays. The first issue relates to whether feature search is performed independently of attention, or rather requires “spread attention”. If feature search is “preattentive,” it should survive neglect. However, we find neglect effects for both feature and conjunction search, suggesting that feature search, too, has an attentional requirement. The second controversy refers to the space-or object-based nature of neglect following unilateral right-hemisphere parietal lobe damage. If neglect were a purely spatial phenomenon, then we would expect no detriment in performance in the right (nonneglect) field, and diminished performance for the whole left (neglect) field. On the other hand, if neglect were purely object-based, we would expect diminished performance on the left side of the search array, irrespective of its location in the visual field. We now demonstrate a combination of strong object-based and space-based neglect effects for conjunction search with laterally placed element arrays, suggesting that these two mechanisms work in tandem.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1997) 9 (6): 824–834.
Published: 01 November 1997
Abstract
View article
PDF
The present research examines the effect of spatial (object-centered) attentional constraints on pattern recognition. Four normal subjects and two right-hemisphere-damaged patients with left visual neglect participated in the study. Small, letterlike, prelearned patterns served as stimuli. Short exposure time prevented overt scanpaths during stimulus presentation. Attention was attracted to a central (midsagittal) hation point by precuing this location prior to each stimulus presentation. Minute (up to 1.5° of visual angle) rightward and leftward stimulus shifts caused attention to be allocated each time to a different location on the object space, while remaining in a fixed central position in viewercentered coordinates. The task was to decide which of several prelearned patterns was presented in each trial. In the normal subjects, best performance was achieved when the luminance centroid (LC; derived from the analysis of low-spatial frequencies in the object space) of each pattern coincided with the spatial position of the precue. In contrast, the patients with neglect showed optimal recognition performance when precuing attracted attention to locations within the object space, to the left of the LC. The normal performance suggests that the LC may serve as a center of gravity for attention allocation during pattern recognition. This point seems to be the target location where focal attention is normally directed, following a primary global analysis based on the low spatial frequencies. Thus, the LC of a simple pattern may serve as the origin point for an object-centered-coordiate-frame (OCCF), dividing it into right and left. This, in turn, serves to create a prototype description of the pattern, in its own coordinates, in memory, to be addressed during subsequent recognition tasks. The best match of the percept with the stored description may explain the observed advantage of allocating attention to the LC. The performance of the brain- damaged patients can be explained in terms of neglect operating in the OCCE