Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Marius V. Peelen
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (3): 390–400.
Published: 01 March 2019
FIGURES
| View All (5)
Abstract
View article
PDF
We internally represent the structure of our surroundings even when there is little layout information available in the visual image, such as when walking through fog or darkness. One way in which we disambiguate such scenes is through object cues; for example, seeing a boat supports the inference that the foggy scene is a lake. Recent studies have investigated the neural mechanisms by which object and scene processing interact to support object perception. The current study examines the reverse interaction by which objects facilitate the neural representation of scene layout. Photographs of indoor (closed) and outdoor (open) real-world scenes were blurred such that they were difficult to categorize on their own but easily disambiguated by the inclusion of an object. fMRI decoding was used to measure scene representations in scene-selective parahippocampal place area (PPA) and occipital place area (OPA). Classifiers were trained to distinguish response patterns to fully visible indoor and outdoor scenes, presented in an independent experiment. Testing these classifiers on blurred scenes revealed a strong improvement in classification in left PPA and OPA when objects were present, despite the reduced low-level visual feature overlap with the training set in this condition. These findings were specific to left PPA/OPA, with no evidence for object-driven facilitation in right PPA/OPA, object-selective areas, and early visual cortex. These findings demonstrate separate roles for left and right scene-selective cortex in scene representation, whereby left PPA/OPA represents inferred scene layout, influenced by contextual object cues, and right PPA/OPA represents a scene's visual features.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (5): 680–692.
Published: 01 May 2016
FIGURES
| View All (6)
Abstract
View article
PDF
Objects belonging to different categories evoke reliably different fMRI activity patterns in human occipitotemporal cortex, with the most prominent distinction being that between animate and inanimate objects. An unresolved question is whether these categorical distinctions reflect category-associated visual properties of objects or whether they genuinely reflect object category. Here, we addressed this question by measuring fMRI responses to animate and inanimate objects that were closely matched for shape and low-level visual features. Univariate contrasts revealed animate- and inanimate-preferring regions in ventral and lateral temporal cortex even for individually matched object pairs (e.g., snake–rope). Using representational similarity analysis, we mapped out brain regions in which the pairwise dissimilarity of multivoxel activity patterns (neural dissimilarity) was predicted by the objects' pairwise visual dissimilarity and/or their categorical dissimilarity. Visual dissimilarity was measured as the time it took participants to find a unique target among identical distractors in three visual search experiments, where we separately quantified overall dissimilarity, outline dissimilarity, and texture dissimilarity. All three visual dissimilarity structures predicted neural dissimilarity in regions of visual cortex. Interestingly, these analyses revealed several clusters in which categorical dissimilarity predicted neural dissimilarity after regressing out visual dissimilarity. Together, these results suggest that the animate–inanimate organization of human visual cortex is not fully explained by differences in the characteristic shape or texture properties of animals and inanimate objects. Instead, representations of visual object properties and object category may coexist in more anterior parts of the visual system.
Journal Articles
Preparatory Activity in Posterior Temporal Cortex Causally Contributes to Object Detection in Scenes
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (11): 2117–2125.
Published: 01 November 2015
FIGURES
| View All (5)
Abstract
View article
PDF
Theories of visual selective attention propose that top–down preparatory attention signals mediate the selection of task-relevant information in cluttered scenes. Neuroimaging and electrophysiology studies have provided correlative evidence for this hypothesis, finding increased activity in target-selective neural populations in visual cortex in the period between a search cue and target onset. In this study, we used online TMS to test whether preparatory neural activity in visual cortex is causally involved in naturalistic object detection. In two experiments, participants detected the presence of object categories (cars, people) in a diverse set of photographs of real-world scenes. TMS was applied over a region in posterior temporal cortex identified by fMRI as carrying category-specific preparatory activity patterns. Results showed that TMS applied over posterior temporal cortex before scene onset (−200 and −100 msec) impaired the detection of object categories in subsequently presented scenes, relative to vertex and early visual cortex stimulation. This effect was specific to category level detection and was related to the type of attentional template participants adopted, with the strongest effects observed in participants adopting category level templates. These results provide evidence for a causal role of preparatory attention in mediating the detection of objects in cluttered daily-life environments.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (8): 1225–1234.
Published: 01 August 2013
FIGURES
| View All (4)
Abstract
View article
PDF
Previous studies have provided evidence for a tool-selective region in left lateral occipitotemporal cortex (LOTC). This region responds selectively to pictures of tools and to characteristic visual tool motion. The present human fMRI study tested whether visual experience is required for the development of tool-selective responses in left LOTC. Words referring to tools, animals, and nonmanipulable objects were presented auditorily to 14 congenitally blind and 16 sighted participants. Sighted participants additionally viewed pictures of these objects. In whole-brain group analyses, sighted participants showed tool-selective activity in left LOTC in both visual and auditory tasks. Importantly, virtually identical tool-selective LOTC activity was found in the congenitally blind group performing the auditory task. Furthermore, both groups showed equally strong tool-selective activity for auditory stimuli in a tool-selective LOTC region defined by the picture-viewing task in the sighted group. Detailed analyses in individual participants showed significant tool-selective LOTC activity in 13 of 14 blind participants and 14 of 16 sighted participants. The strength and anatomical location of this activity were indistinguishable across groups. Finally, both blind and sighted groups showed significant resting state functional connectivity between left LOTC and a bilateral frontoparietal network. Together, these results indicate that tool-selective activity in left LOTC develops without ever having seen a tool or its motion. This finding puts constraints on the possible role that this region could have in tool processing and, more generally, provides new insights into the principles shaping the functional organization of OTC.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (10): 2096–2107.
Published: 01 October 2012
FIGURES
Abstract
View article
PDF
Verbs and nouns differ not only on formal linguistic grounds but also in what they typically refer to: Verbs typically refer to actions, whereas nouns typically refer to objects. Prior neuroimaging studies have revealed that regions in the left lateral temporal cortex (LTC), including the left posterior middle temporal gyrus (pMTG), respond selectively to action verbs relative to object nouns. Other studies have implicated the left pMTG in action knowledge, raising the possibility that verb selectivity in LTC may primarily reflect action-specific semantic features. Here, using functional neuroimaging, we test this hypothesis. Participants performed a simple memory task on visually presented verbs and nouns that described either events (e.g., “he eats” and “the conversation”) or states (e.g., “he exists” and “the value”). Verb-selective regions in the left pMTG and the left STS were defined in individual participants by an independent localizer contrast between action verbs and object nouns. Both regions showed equally strong selectivity for event and state verbs relative to semantically matched nouns. The left STS responded more to states than events, whereas there was no difference between states and events in the left pMTG. Finally, whole-brain group analysis revealed that action verbs, relative to state verbs, activated a cluster in pMTG that was located posterior to the verb-selective pMTG clusters. Together, these results indicate that verb selectivity in LTC is independent of action representations. We consider other differences between verbs and nouns that may underlie verb selectivity in LTC, including the verb property of predication.