Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Mark A. Bellgrove
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (6): 1020–1031.
Published: 01 May 2021
FIGURES
| View All (9)
Abstract
View article
PDF
Current models of perceptual decision-making assume that choices are made after evidence in favor of an alternative accumulates to a given threshold. This process has recently been revealed in human EEG recordings, but an unresolved issue is how these neural mechanisms are modulated by competing, yet task-irrelevant, stimuli. In this study, we tested 20 healthy participants on a motion direction discrimination task. Participants monitored two patches of random dot motion simultaneously presented on either side of fixation for periodic changes in an upward or downward motion, which could occur equiprobably in either patch. On a random 50% of trials, these periods of coherent vertical motion were accompanied by simultaneous task-irrelevant, horizontal motion in the contralateral patch. Our data showed that these distractors selectively increased the amplitude of early target selection responses over scalp sites contralateral to the distractor stimulus, without impacting on responses ipsilateral to the distractor. Importantly, this modulation mediated a decrement in the subsequent buildup rate of a neural signature of evidence accumulation and accounted for a slowing of RTs. These data offer new insights into the functional interactions between target selection and evidence accumulation signals, and their susceptibility to task-irrelevant distractors. More broadly, these data neurally inform future models of perceptual decision-making by highlighting the influence of early processing of competing stimuli on the accumulation of perceptual evidence.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (7): 1044–1053.
Published: 01 July 2019
FIGURES
| View All (4)
Abstract
View article
PDF
Recent behavioral modeling and pupillometry studies suggest that neuromodulatory arousal systems play a role in regulating decision formation but neurophysiological support for these observations is lacking. We employed a randomized, double-blinded, placebo-controlled, crossover design to probe the impact of pharmacological enhancement of catecholamine levels on perceptual decision-making. Catecholamine levels were manipulated using the clinically relevant drugs methylphenidate and atomoxetine, and their effects were compared with those of citalopram and placebo. Participants performed a classic EEG oddball paradigm that elicits the P3b, a centro-parietal potential that has been shown to trace evidence accumulation, under each of the four drug conditions. We found that methylphenidate and atomoxetine administration shortened RTs to the oddball targets. The neural basis of this behavioral effect was an earlier P3b peak latency, driven specifically by an increase in its buildup rate without any change in its time of onset or peak amplitude. This study provides neurophysiological evidence for the catecholaminergic enhancement of a discrete aspect of human decision-making, that is, evidence accumulation. Our results also support theoretical accounts suggesting that catecholamines may enhance cognition via increases in neural gain.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (1): 154–164.
Published: 01 January 2014
FIGURES
| View All (6)
Abstract
View article
PDF
It is known that the parahippocampal cortex is involved in object–place associations in spatial learning, but it remains unknown whether activity within this region is modulated by affective signals during navigation. Here we used fMRI to measure the neural consequences of emotional experiences on place memory during navigation. A day before scanning, participants undertook an active object location memory task within a virtual house in which each room was associated with a different schedule of task-irrelevant emotional events. The events varied in valence (positive, negative, or neutral) and in their rate of occurrence (intermittent vs. constant). On a subsequent day, we measured neural activity while participants were shown static images of the previously learned virtual environment, now in the absence of any affective stimuli. Our results showed that parahippocampal activity was significantly enhanced bilaterally when participants viewed images of a room in which they had previously encountered negatively arousing events. We conclude that such automatic enhancement of place representations by aversive emotional events serves as an important adaptive mechanism for avoiding future threats.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (4): 649–656.
Published: 01 April 2013
FIGURES
Abstract
View article
PDF
Response inhibition, comprising action cancellation and action restraint, and error awareness are executive functions of considerable clinical relevance to neuropsychiatric disorders. Nevertheless, our understanding of their underlying catecholamine mechanisms, particularly regarding dopamine, is limited. Here, we used the dopamine D 2 agonist cabergoline to study its ability to improve inhibitory control and modulate awareness of performance errors. A randomized, double-blind, placebo-controlled, crossover design with a single dose of cabergoline (1.25 mg) and placebo (dextrose) was employed in 25 healthy participants. They each performed the stop-signal task, a well-validated measure of action cancellation, and the Error Awareness Task, a go/no-go measure of action restraint and error awareness, under each drug condition. Cabergoline was able to selectively reduce stop-signal RT, compared with placebo, indicative of enhanced action cancellation ( p < .05). This enhancement occurred without concomitant changes in overall response speed or RT variability and was not seen for errors of commission on the Error Awareness Task. Awareness of performance errors on the go/no-go task was, however, significantly improved by cabergoline compared with placebo ( p < .05). Our results contribute to growing evidence for the dopaminergic control of distinct aspects of human executive ability, namely, action cancellation and error awareness. The findings may aid the development of new, or the repurposing of existing, pharmacotherapy that targets the cognitive dysfunction of psychiatric and neurological disorders. They also provide further evidence that specific cognitive paradigms have correspondingly specific neurochemical bases.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (1): 93–104.
Published: 01 January 2009
Abstract
View article
PDF
Disentangling the component processes that contribute to human executive control is a key challenge for cognitive neuroscience. Here, we employ event-related potentials to provide electrophysiological evidence that action errors during a go/no-go task can result either from sustained attention failures or from failures of response inhibition, and that these two processes are temporally and physiologically dissociable, although the behavioral error—a nonintended response—is the same. Thirteen right-handed participants performed a version of a go/no-go task in which stimuli were presented in a fixed and predictable order, thus encouraging attentional drift, and a second version in which an identical set of stimuli was presented in a random order, thus placing greater emphasis on response inhibition. Electrocortical markers associated with goal maintenance (late positivity, alpha synchronization) distinguished correct and incorrect performance in the fixed condition, whereas errors in the random condition were linked to a diminished N2–P3 inhibitory complex. In addition, the amplitude of the error-related negativity did not differ between correct and incorrect responses in the fixed condition, consistent with the view that errors in this condition do not arise from a failure to resolve response competition. Our data provide an electrophysiological dissociation of sustained attention and response inhibition.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (3): 444–455.
Published: 01 March 2006
Abstract
View article
PDF
In the course of daily living, humans frequently encounter situations in which a motor activity, once initiated, becomes unnecessary or inappropriate. Under such circumstances, the ability to inhibit motor responses can be of vital importance. Although the nature of response inhibition has been studied in psychology for several decades, its neural basis remains unclear. Using transcranial magnetic stimulation, we found that temporary deactivation of the pars opercularis in the right inferior frontal gyrus selectively impairs the ability to stop an initiated action. Critically, deactivation of the same region did not affect the ability to execute responses, nor did it influence physiological arousal. These findings confirm and extend recent reports that the inferior frontal gyrus is vital for mediating response inhibition.