Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Martin Reuter
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (9): 1944–1954.
Published: 01 September 2010
FIGURES
| View All (5)
Abstract
View article
PDF
Working memory capacity is extremely limited and individual differences are heritable to a considerable extent. In the search for a better understanding of the exact genetic underpinnings of working memory, most research has focused on functional gene variants involved in the metabolism of the neurotransmitter dopamine. Recently, there has been investigation of genes related to other neurotransmitter systems such as acetylcholine. The potential relevance of a polymorphism located in the gene coding for the alpha4 subunit of the nicotinic acetylcholine receptor (rs#1044396) has been discussed with respect to working memory, but empirical investigations have provided mixed results. However, pharmacological studies in both rodents and humans have shown that the effect of nicotinic agonists on cognitive functions is mediated by dopamine. We therefore hypothesized that such an interaction can be found on a molecular genetic level as well. In order to test this hypothesis, we genotyped 101 healthy subjects for rs#1044396 and three functional polymorphisms on the dopamine d2 receptor gene (rs#1800497, rs#6277, rs#2283265). These subjects performed a visuospatial working memory task in which memory load was systematically varied. We found a significant interaction between rs#1044396 and a haplotype block covering all three dopaminergic polymorphisms on working memory capacity. This effect only became apparent on higher levels of working memory load. This is the first evidence from a molecular genetic perspective that these two neurotransmitter systems interact on cognitive functioning. The results are discussed with regard to their implication for working memory theories and their clinical relevance for treatment of substance abuse and schizophrenia.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (3): 401–408.
Published: 01 March 2007
Abstract
View article
PDF
Current models of attention describe attention not as a homogenous entity but as a set of neural networks whose measurement yields a set of three endophenotypes—alerting, orienting, and executive control. Previous findings revealed different neuroanatomical regions for these subsystems, and data from twin studies indicate differences in their heritability. The present study investigated the molecular genetic basis of attention in a sample of 100 healthy subjects. Attention performance was assessed with the attention network test that distinguishes alerting, orienting, and executive control (conflict) using a simple reaction time paradigm with different cues and congruent and incongruent flankers. Two gene loci on candidate genes for cognitive functioning, the functional catechol- O -methyltransferase ( COMT ) VAL158MET and the tryptophan hydroxylase 2 ( TPH2 ) −703 G/T promoter polymorphism, were tested for possible associations with attention. COMT is involved in the catabolism of dopamine, and TPH is the rate-limiting enzyme for serotonin synthesis. Results showed no effect of the COMT polymorphism on attention performance. However, the TT genotype of TPH2 −03 G/T was significantly associated with more errors (a possible indicator of impaired impulse control; p = .001) and with decreased performance in executive control ( p = .001). This single-nucleotide polymorphism on the TPH2 gene explained more than 10% of the variance in both indicators of attention stressing the role of the serotonergic system for cognitive functions.