Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Masato Taira
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (3): 307–318.
Published: 01 March 2018
FIGURES
| View All (5)
Abstract
View article
PDF
Having chosen an item typically increases the subjective value of the chosen item, and people generally enjoy making choices from larger choice sets. However, having too many items to choose from can reduce the value of chosen items—for example, because of conflict or choice difficulty. In this study, we investigated the effects of choice set size on behavioral and neural value updating (revaluation) of the chosen item. In the scanner, participants selected items from choice sets of various sizes (one, two, four, or eight items). After they chose an item, participants rerated the chosen item, and we quantified revaluation by taking the difference of postchoice minus prechoice ratings. Revaluation of chosen items increased up to choice sets of four alternatives but then decreased again for items chosen from choice sets of eight alternatives, revealing both a linear and a quadratic effect of choice set size. At the time of postchoice rating, activation of the ventrolateral pFC (VLPFC) reflected the influence of choice set size on parametric revaluation, without significant relation to either prechoice or postchoice ratings tested separately. Additional analyses revealed relations of choice set size to anterior cingulate and insula activity during actual choice and increased coupling of both regions to revaluation-related VLPFC during postchoice rating. These data suggest that the VLPFC plays a central role in a network that relates choice set size to updating the value of chosen items and integrates choice overload with value-enhancing effects of larger choice sets.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (5): 727–741.
Published: 01 June 2004
Abstract
View article
PDF
In order to separate the cognitive processes associated with phonological encoding and the use of a visual word form lexicon in reading, it is desirable to compare the processing of words presented in a visually familiar form with words in a visually unfamiliar form. Japanese Kana orthography offers this possibility. Two phonologically equivalent but visually dissimilar syllabaries allow the writing of, for example, foreign loanwords in two ways, only one of which is visually familiar. Familiarly written words, unfamiliarly written words, and pseudowords were presented in both Kana syllabaries (yielding six conditions in total) to participants during an fMRI measurement with a silent articulation task (Experiment 1) and a phonological lexical decision task (Experiment 2) using an event-related design. Consistent over two experimental tasks, the three different stimulus types (familiar, unfamiliar, and pseudoword) were found to activate selectively different brain regions previously associated with phonological encoding and word retrieval or meaning. Compatible with the predictions of the dual-route model for reading, pseudowords and visually unfamiliar words, which have to be read using phonological assembly, caused an increase in brain activity in left inferior frontal regions (BA 44/47), as compared to visually familiar words. Visually familiar and unfamiliar words were found to activate a range of areas associated with lexico-semantic processing more strongly than pseudowords, such as the left and right temporo-parietal region (BA 39/40), a region in the left middle/inferior temporal gyrus (BA 20/21), and the posterior cingulate (BA 31).