Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Massimiliano Oliveri
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (2): 338–348.
Published: 01 February 2011
FIGURES
| View All (8)
Abstract
View article
PDF
The cerebellum is involved in motor learning of new procedures both during actual execution of a motor task and during observational training. These processes are thought to depend on the activity of a neural network that involves the lateral cerebellum and primary motor cortex (M1). In this study, we used a twin-coil TMS technique to investigate whether execution and observation of a visuomotor procedural learning task is related to modulation of cerebello-motor connectivity. We observed that, at rest, a magnetic conditioning pulse applied over the lateral cerebellum reduced the motor-evoked potentials obtained by stimulating the contralateral M1, indicating activation of a cerebello-motor connection. Furthermore, during procedural learning, cerebellar stimulation resulted in selective facilitation, not inhibition, of contralateral M1 excitability. The effects were evident when motor learning was obtained by actual execution of the task or by observation, but they disappeared if procedural learning had already been acquired by previous observational training. These results indicate that changes in cerebello-motor connectivity occur in relation to specific phases of procedural learning, demonstrating a complex pattern of excitatory and inhibitory drives modulated across time.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (10): 1656–1663.
Published: 01 October 2007
Abstract
View article
PDF
Neuroimaging evidence increasingly supports the hypothesis that the same neural structures subserve the execution, imagination, and observation of actions. We used repetitive transcranial magnetic stimulation (rTMS) to investigate the specific roles of cerebellum and dorsolateral prefrontal cortex (DLPFC) in observational learning of a visuomotor task. Subjects observed an actor detecting a hidden sequence in a matrix and then performed the task detecting either the previously observed sequence or a new one. rTMS applied over the cerebellum before the observational training interfered with performance of the new sequence, whereas rTMS applied over the DLPFC interfered with performance of the previously observed one. When rTMS applied over cerebellar or prefrontal site was delivered after the observational training, no influence was observed on the execution of the task. These results furnish new insights on the neural circuitry involved in the single component of observational learning and allow us to hypothesize that cerebellum and DLPFC interact in planning actions, the former by permitting the acquisition of procedural competencies and the latter by providing flexibility among already acquired solutions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (9): 1605–1611.
Published: 01 November 2004
Abstract
View article
PDF
Increasing evidence suggests cerebellar involvement in procedural learning. To further analyze its role and to assess whether it has a lateralized influence, in the present study we used a repetitive transcranial magnetic stimulation interference approach in a group of normal subjects performing a serial reaction time task. We studied 36 normal volunteers: 13 subjects underwent repetitive transcranial magnetic stimulation on the left cerebellum and performed the task with the right (6 subjects) or left (7 subjects) hand; 10 subjects underwent repetitive transcranial magnetic stimulation on the right cerebellum and performed the task with the hand ipsilateral (5 subjects) or contralateral (5 subjects) to the stimulation; another 13 subjects served as controls and were not submitted to repetitive transcranial magnetic stimulation; 7 of them performed the task with the right hand and 6 with the left hand. The main results show that interference with the activity of the lateral cerebellum induces a significant decrease of procedural learning: Interference with the right cerebellar hemisphere activity induces a significant decrease in procedural learning regardless of the hand used to perform the serial reaction time task, whereas left cerebellar hemisphere activity seems more linked with procedural learning through the ipsilateral hand. In conclusion, the present study shows for the first time that a transient interference with the functions of the cerebellar cortex results in an impairment of procedural learning in normal subjects and it provides new evidences for interhemispheric differences in the lateral cerebellum.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (5): 848–855.
Published: 01 June 2004
Abstract
View article
PDF
It has been suggested that figurative language, which includes idioms, is controlled by the right hemisphere. We tested the right hemisphere hypothesis by using repetitive transcranial magnetic stimulation (rTMS) to transiently disrupt the function of the frontal and temporal areas of the right versus left hemisphere in a group of normal participants involved in a task of opaque idiom versus literal sentence comprehension. Forty opaque, nonambiguous idioms were selected. Fifteen young healthy participants underwent rTMS in two sessions. The experiment was run in five blocks, corresponding to the four stimulated scalp positions (left frontal and temporal and right frontal and temporal) and a baseline. Each block consisted of 16 trials—8 trials with idioms and 8 trials with literal sentences. In each trial, the subject was presented with a written sentence, which appeared on the screen for 2000 msec, followed by a pair of pictures for 2500 msec, one of which corresponded to the sentence. The alternative corresponded to the literal meaning for idioms and to a sentence differing in a detail in the case of literal sentences. The subject had to press a button corresponding to the picture matching the string. Reaction times increased following left temporal rTMS, whereas they were unaffected by right hemisphere rTMS, with no difference between idiomatic and literal sentences. Left temporal rTMS also reduced accuracy without differences between the two types of sentences. These data suggest that opaque idiom and literal sentence comprehension depends on the left temporal cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (3): 374–381.
Published: 01 April 2004
Abstract
View article
PDF
A number of researchers have proposed that the premotor and motor areas are critical for the representation of words that refer to actions, but not objects. Recent evidence against this hypothesis indicates that the left premotor cortex is more sensitive to grammatical differences than to conceptual differences between words. However, it may still be the case that other anterior motor regions are engaged in processing a word's sensorimotor features. In the present study, we used singleand paired-pulse transcranial magnetic stimulation to test the hypothesis that left primary motor cortex is activated during the retrieval of words (nouns and verbs) associated with specific actions. We found that activation in the motor cortex increased for action words compared with non-action words, but was not sensitive to the grammatical category of the word being produced. These results complement previous findings and support the notion that producing a word activates some brain regions relevant to the sensorimotor properties associated with that word regardless of its grammatical category.