Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Matthew C. Costello
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (10): 1532–1548.
Published: 01 October 2018
FIGURES
| View All (11)
Abstract
View articletitled, Age-related Decline of Visual Working Memory: Behavioral Results Simulated with a Dynamic Neural Field Model
View
PDF
for article titled, Age-related Decline of Visual Working Memory: Behavioral Results Simulated with a Dynamic Neural Field Model
Visual working memory (VWM) is essential for executive function and is known to be compromised in older adults. Yet, the cognitive and neural processes associated with these age-related changes remain inconclusive. The purpose of this study was to explore such factors with a dynamic neural field (DNF) model that was manipulated to replicate the behavioral performances of younger and older adults in a change detection task. Although previous work has successfully modeled children and younger adult VWM performance, this study represents the first attempt to model older adult VWM performance within the DNF architecture. In the behavioral task, older adults performed worse than younger adults and exhibited a characteristic response bias that favored “same” over “different” responses. The DNF model was modified to capture the age group differences, with three parameter manipulations producing the best fit for the behavioral performances. The best-fitting model suggests that older adults operate through altered excitatory and inhibitory coupling and decreased inhibitory signals, resulting in wider and weaker neural signals. These results support a dedifferentiation account of brain aging, with older adults operating with wider and weaker neural signals because of decreased intracortical inhibition rather than increased stochastic neural noise.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (2): 289–302.
Published: 01 February 2008
Abstract
View articletitled, Cerebral White Matter Integrity Mediates Adult Age Differences in Cognitive Performance
View
PDF
for article titled, Cerebral White Matter Integrity Mediates Adult Age Differences in Cognitive Performance
Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white matter–cognition relation reduces the magnitude of age–cognition relation. In this research, we tested the mediating role of white matter integrity, in the context of a task-switching paradigm involving word categorization. Participants were 20 healthy, community-dwelling older adults (60–85 years), and 20 younger adults (18–27 years). From diffusion tensor imaging tractography, we obtained fractional anisotropy (FA) as an index of white matter integrity in the genu and splenium of the corpus callosum and the superior longitudinal fasciculus (SLF). Mean FA values exhibited age-related decline consistent with a decrease in white matter integrity. From a model of reaction time distributions, we obtained independent estimates of the decisional and nondecisional (perceptual–motor) components of task performance. Age-related decline was evident in both components. Critically, age differences in task performance were mediated by FA in two regions: the central portion of the genu, and splenium–parietal fibers in the right hemisphere. This relation held only for the decisional component and was not evident in the nondecisional component. This result is the first demonstration that the integrity of specific white matter tracts is a mediator of age-related changes in cognitive performance.