Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Matthew D. J. McGarry
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (9): 1704–1713.
Published: 01 September 2020
FIGURES
| View All (5)
Abstract
View article
PDF
The hippocampus is necessary for binding and reconstituting information in relational memory. These essential memory functions are supported by the distinct cytoarchitecture of the hippocampal subfields. Magnetic resonance elastography is an emerging tool that provides sensitive estimates of microstructure vis-à-vis tissue mechanical properties. Here, we report the first in vivo study of human hippocampal subfield viscoelastic stiffness and damping ratio. Stiffness describes resistance of a viscoelastic tissue to a stress and is thought to reflect the relative composition of tissue at the microscale; damping ratio describes relative viscous-to-elastic behavior and is thought to generally reflect microstructural organization. Measures from the subiculum (combined with presubiculum and parasubiculum), cornu ammonis (CA) 1–2, and CA3-dentate gyrus (CA3-DG) were collected in a sample of healthy, cognitively normal men ( n = 20, age = 18–33 years). In line with known cytoarchitecture, the subiculum demonstrated the lowest damping ratio, followed by CA3-DG and then combined CA1–CA2. Moreover, damping ratio of the CA3-DG—potentially reflective of number of cells and their connections—predicted relational memory accuracy and alone replicated most of the variance in performance that was explained by the whole hippocampus. Stiffness did not differentiate the hippocampal subfields and was unrelated to task performance in this sample. Viscoelasticity measured with magnetic resonance elastography appears to be sensitive to microstructural properties relevant to specific memory function, even in healthy younger adults, and is a promising tool for future studies of hippocampal structure in aging and related diseases.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (12): 1857–1872.
Published: 01 December 2019
FIGURES
| View All (4)
Abstract
View article
PDF
Declarative memory is supported by distributed brain networks in which the medial-temporal lobes (MTLs) and pFC serve as important hubs. Identifying the unique and shared contributions of these regions to successful memory performance is an active area of research, and a growing literature suggests that these structures often work together to support declarative memory. Here, we present data from a context-dependent relational memory task in which participants learned that individuals belonged in a single room in each of two buildings. Room assignment was consistent with an underlying contextual rule structure in which male and female participants were assigned to opposite sides of a building and the side assignment switched between buildings. In two experiments, neural correlates of performance on this task were evaluated using multiple neuroimaging tools: diffusion tensor imaging (Experiment 1), magnetic resonance elastography (Experiment 1), and functional MRI (Experiment 2). Structural and functional data from each individual modality provided complementary and consistent evidence that the hippocampus and the adjacent white matter tract (i.e., fornix) supported relational memory, whereas the ventromedial pFC/OFC (vmPFC/OFC) and the white matter tract connecting vmPFC/OFC to MTL (i.e., uncinate fasciculus) supported memory-guided rule use. Together, these data suggest that MTL and pFC structures differentially contribute to and support contextually guided relational memory.