Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Matthew F. S. Rushworth
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (12): 2369–2383.
Published: 01 December 2009
Abstract
View articletitled, The Timing of Neural Activity during Shifts of Spatial Attention
View
PDF
for article titled, The Timing of Neural Activity during Shifts of Spatial Attention
We developed a new experimental task to investigate the relative timing of neural activity during shifts of spatial attention with event-related potentials. The task enabled the investigation of nonlateralized as well as lateralized neural activity associated with spatial shifts. Participants detected target stimuli within one of two peripheral streams of visual letters. Colored letters embedded within the streams indicated which stream was to be used for target detection, signaling that participants should “hold” or “shift” their current focus of spatial attention. A behavioral experiment comparing performance in these focused-attention conditions with performance in a divided-attention condition confirmed the efficacy of the spatial cues. Another behavioral experiment showed that overt shifts of spatial attention were mainly complete by around 400 msec, placing an upper boundary for isolating neural activity that was instrumental in controlling spatial shifts. Event-related potentials recorded during a covert version of the focused-attention task showed a large amount of nonlateralized neural activity associated with spatial shifts, with significant effects starting around 330 msec. The effects started over posterior scalp regions, where they remained pronounced. Transient effects were also observed over frontal scalp regions. The results are compatible with a pivotal role of posterior parietal areas in initiating shifts of spatial attention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (1): 124–136.
Published: 01 January 2005
Abstract
View articletitled, Parietal rTMS Disrupts the Initiation but not the Execution of On-line Adjustments to a Perturbation of Object Size
View
PDF
for article titled, Parietal rTMS Disrupts the Initiation but not the Execution of On-line Adjustments to a Perturbation of Object Size
Previous studies have implicated the human parietal lobes in the on-line guidance of action. However, no study to date has examined at what stage in the on-line adjustment process do the parietal lobes play their most critical role. Repetitive transcranial magnetic stimulation (rTMS) was applied over the left intraparietal sulcus as participants reached to grasp a small or large illuminated cylinder. On some trials, the illumination could suddenly switch from the small to large cylinder, or vice-versa. Small–Large switches were associated with relatively early grip aperture adjustments, whereas Large–Small switches were associated with relatively late grip aperture adjustments. When rTMS was applied early in the movement, it disrupted on-line adjustments to Small–Large target switches, but not to Large–Small switches. Conversely, when rTMS was applied late in the movement, it disrupted adjustments to Large–Small target switches but not to Small–Large switches. The timing of the disruption by rTMS appeared linked to the initiation of the adjustment. It was concluded that the left parietal lobe plays a critical role in initiating an on-line adjustment to a change in target size, but not in executing that adjustment. The implications of these results for current views of on-line control are discussed.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (9): 1536–1551.
Published: 01 November 2004
Abstract
View articletitled, Response-Selection-Related Parietal Activation during Number Comparison
View
PDF
for article titled, Response-Selection-Related Parietal Activation during Number Comparison
Neuroimaging studies of number comparison have consistently found activation in the intraparietal sulcus (IPS). Recently, it has been suggested that activations in the IPS vary with the distance between the numbers being compared. In number comparison, the smaller the distance between a number and the reference the longer the reaction time (RT). Activations in the right or left IPS, however, have also been related to attentional and intentional selection. It is possible, therefore, that activity in this region is a reflection of the more basic stimulus and response-selection processes associated with changes in RT. This fMRI experiment investigated the effect of numerical distance independently from RT. In addition, activations during number comparison of single-digit and double-digit stimuli were compared. During number comparison blocks, subjects had to indicate whether digits were greater or smaller than a reference (5 or 65). In control blocks, they were asked to perform a perceptual task (vertical line present/absent) on either numerical or nonnumerical stimuli. Number comparison versus rest yielded a large bilateral parietal-posterior frontal network. However, no areas showed more activation during number comparison than during the control tasks. Furthermore, no areas were more active during comparison of numbers separated by a small distance than comparisons of those separated by a large distance or vice versa. A left-lateralized parietal-posterior frontal network varied significantly with RT. Our findings suggest that magnitude and numerical-distance-related IPS activations might be difficult to separate from fundamental stimulus and response-selection processes associated with RT changes. As is the case with other parameters, such as space, magnitude may be represented in the context of response selection in the parietal cortex. In this respect, the representation of magnitude in the human IPS may be similar to the representation of magnitude in other nonhuman primates.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (1): 71–84.
Published: 01 January 2003
Abstract
View articletitled, Semantic Processing in the Left Inferior Prefrontal Cortex: A Combined Functional Magnetic Resonance Imaging and Transcranial Magnetic Stimulation Study
View
PDF
for article titled, Semantic Processing in the Left Inferior Prefrontal Cortex: A Combined Functional Magnetic Resonance Imaging and Transcranial Magnetic Stimulation Study
The involvement of the left inferior prefrontal cortex (LIPC) in phonological processing is well established from both lesion-deficit studies with neurological patients and functional neuroimaging studies of normals. Its involvement in semantic processing, on the other hand, is less clear. Although many imaging studies have demonstrated LIPC activation during semantic tasks, this may be due to implicit phonological processing. This article presents two experiments investigating semantic functions in the LIPC. Results from a functional magnetic resonance imaging experiment demonstrated that both semantic and phonological processing activated a common set of areas within this region. In addition, there was a reliable increase in activation for semantic relative to phonological decisions in the anterior LIPC while the opposite comparison (phonological vs. semantic decisions) revealed an area of enhanced activation within the posterior LIPC. A second experiment used transcranial magnetic stimulation (TMS) to temporarily interfere with neural information processing in the anterior portion of the LIPC to determine whether this region was essential for normal semantic performance. Both repetitive and single pulse TMS significantly slowed subjects' reactions for the semantic but not for the perceptual control task. Our results clarify the functional anatomy of the LIPC by demonstrating that anterior and posterior regions contribute to both semantic and phonological processing, albeit to different extents. In addition, the findings go beyond simply establishing a correlation between semantic processing and activation in the LIPC and demonstrate that a transient disruption of processing selectively interfered with semantic processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (8): 1139–1150.
Published: 15 November 2002
Abstract
View articletitled, Components of Switching Intentional Set
View
PDF
for article titled, Components of Switching Intentional Set
Despite the intuition that we can shift cognitive set on instruction, some behavioral studies have suggested that set shifting might only be accomplished once we engage in performance of the new task. It is possible that set switching consists of more than one component cognitive process and that the component processes might segregated in time. We recorded event-related potentials (ERPs) during two set-switching tasks to test whether different component processes were responsible for (i) set initiation and reconfiguration when presented with the instruction to switch, and (ii) the implementation of the new set once subjects engaged in performing the new task. The response switching (RS) task required shifts of intentional set; subjects selected between responses according to one of two conflicting intentional sets. The results demonstrated the existence of more than one constituent process. Some of the processes were linked to the initiation and reconfiguration of the set prior to actual performance of the new task. Other processes were time locked to performance of new task items. Set initiation started with modulation of medial frontal ERPs and was followed by modulation over parietal electrodes. Implementation of intentional set was associated with modulation of response-related ERPs.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (5): 698–710.
Published: 01 July 2001
Abstract
View articletitled, The Attentional Role of the Left Parietal Cortex: The Distinct Lateralization and Localization of Motor Attention in the Human Brain
View
PDF
for article titled, The Attentional Role of the Left Parietal Cortex: The Distinct Lateralization and Localization of Motor Attention in the Human Brain
It is widely agreed that visuospatial orienting attention depends on a network of frontal and parietal areas in the right hemisphere. It is thought that the visuospatial orienting role of the right parietal lobe is related to its role in the production of overt eye movements. The experiments reported here test the possibility that other parietal regions may be important for directing attention in relation to response modalities other than eye movement. Specifically, we used positron emission tomography (PET) to test the hypothesis that a ‘left’ parietal area, the supramarginal gyrus, is important for attention in relation to limb movements (Rushworth et al., 1997; Rushworth, Ellison, & Walsh, in press). We have referred to this process as ‘motor attention’ to distinguish it from orienting attention. In one condition subjects spent most of the scanning period covertly attending to ‘left’ hand movements that they were about to make. Activity in this first condition was compared with a second condition with identical stimuli and movement responses but lacking motor attention periods. Comparison of the conditions revealed that motor attention related activity was almost exclusively restricted to the ‘left’ hemisphere despite the fact that subjects only ever made ipsilateral, left-hand responses. Left parietal activity was prominent in this comparison, within the parietal lobe the critical region for motor attention was the supramarginal gyrus and the adjacent anterior intraparietal sulcus (AIP), a region anterior to the posterior parietal cortex identified with orienting attention. In a second part of the experiment we compared a condition in which subjects covertly rehearsed verbal responses with a condition in which they made verbal responses immediately without rehearsal. A comparison of the two conditions revealed verbal rehearsal-related activity in several anterior left hemisphere areas including Broca's area. The lack of verbal rehearsal-related activity in the left supra-marginal gyrus confirms that this area plays a direct role in motor attention that cannot be attributed to any strategy of verbal mediation. The results also provide evidence concerning the importance of ventral premotor (PMv) and Broca's area in motor attention and language processes.