Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Matthew M. Walsh
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (2): 352–367.
Published: 01 February 2017
FIGURES
| View All (10)
Abstract
View article
PDF
In this study, we investigated the information processing stages underlying associative recognition. We recorded EEG data while participants performed a task that involved deciding whether a probe word triple matched any previously studied triple. We varied the similarity between probes and studied triples. According to a model of associative recognition developed in the Adaptive Control of Thought-Rational cognitive architecture, probe similarity affects the duration of the retrieval stage: Retrieval is fastest when the probe is similar to a studied triple. This effect may be obscured, however, by the duration of the comparison stage, which is fastest when the probe is not similar to the retrieved triple. Owing to the opposing effects of probe similarity on retrieval and comparison, overall RTs provide little information about each stage's duration. As such, we evaluated the model using a novel approach that decomposes the EEG signal into a sequence of latent states and provides information about the durations of the underlying information processing stages. The approach uses a hidden semi-Markov model to identify brief sinusoidal peaks (called bumps) that mark the onsets of distinct cognitive stages. The analysis confirmed that probe type has opposite effects on retrieval and comparison stages.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (12): 2151–2166.
Published: 01 December 2013
FIGURES
| View All (6)
Abstract
View article
PDF
In this study, we investigated the stages of information processing in associative recognition. We recorded EEG data while participants performed an associative recognition task that involved manipulations of word length, associative fan, and probe type, which were hypothesized to affect the perceptual encoding, retrieval, and decision stages of the recognition task, respectively. Analyses of the behavioral and EEG data, supplemented with classification of the EEG data using machine-learning techniques, provided evidence that generally supported the sequence of stages assumed by a computational model developed in the Adaptive Control of Thought-Rational cognitive architecture. However, the results suggested a more complex relationship between memory retrieval and decision-making than assumed by the model. Implications of the results for modeling associative recognition are discussed. The study illustrates how a classifier approach, in combination with focused manipulations, can be used to investigate the timing of processing stages.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (11): 1986–2002.
Published: 01 November 2013
FIGURES
| View All (8)
Abstract
View article
PDF
Much research focuses on how people acquire concrete stimulus–response associations from experience; however, few neuroscientific studies have examined how people learn about and select among abstract rules. To address this issue, we recorded ERPs as participants performed an abstract rule-learning task. In each trial, they viewed a sample number and two test numbers. Participants then chose a test number using one of three abstract mathematical rules they freely selected from: greater than the sample number, less than the sample number, or equal to the sample number. No one rule was always rewarded, but some rules were rewarded more frequently than others. To maximize their earnings, participants needed to learn which rules were rewarded most frequently. All participants learned to select the best rules for repeating and novel stimulus sets that obeyed the overall reward probabilities. Participants differed, however, in the extent to which they overgeneralized those rules to repeating stimulus sets that deviated from the overall reward probabilities. The feedback-related negativity (FRN), an ERP component thought to reflect reward prediction error, paralleled behavior. The FRN was sensitive to item-specific reward probabilities in participants who detected the deviant stimulus set, and the FRN was sensitive to overall reward probabilities in participants who did not. These results show that the FRN is sensitive to the utility of abstract rules and that the individual's representation of a task's states and actions shapes behavior as well as the FRN.