Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Matthias Ekman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (9): 1547–1565.
Published: 01 September 2017
FIGURES
| View All (5)
Abstract
View article
PDF
Goal-directed behavior in a complex world requires the maintenance of goal-relevant information despite multiple sources of distraction. However, the brain mechanisms underlying distractor-resistant working or short-term memory (STM) are not fully understood. Although early single-unit recordings in monkeys and fMRI studies in humans pointed to an involvement of lateral prefrontal cortices, more recent studies highlighted the importance of posterior cortices for the active maintenance of visual information also in the presence of distraction. Here, we used a delayed match-to-sample task and multivariate searchlight analyses of fMRI data to investigate STM maintenance across three extended delay phases. Participants maintained two samples (either faces or houses) across an unfilled pre-distractor delay, a distractor-filled delay, and an unfilled post-distractor delay. STM contents (faces vs. houses) could be decoded above-chance in all three delay phases from occipital, temporal, and posterior parietal areas. Classifiers trained to distinguish face versus house maintenance successfully generalized from pre- to post-distractor delays and vice versa, but not to the distractor delay period. Furthermore, classifier performance in all delay phases was correlated with behavioral performance in house, but not face, trials. Our results demonstrate the involvement of distributed posterior, but not lateral prefrontal, cortices in active maintenance during and after distraction. They also show that the neural code underlying STM maintenance is transiently changed in the presence of distractors and reinstated after distraction. The correlation with behavior suggests that active STM maintenance is particularly relevant in house trials, whereas face trials might rely more strongly on contributions from long-term memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (1): 1–7.
Published: 01 January 2016
FIGURES
Abstract
View article
PDF
Auditory speech perception can be altered by concurrent visual information. The superior temporal cortex is an important combining site for this integration process. This area was previously found to be sensitive to audiovisual congruency. However, the direction of this congruency effect (i.e., stronger or weaker activity for congruent compared to incongruent stimulation) has been more equivocal. Here, we used fMRI to look at the neural responses of human participants during the McGurk illusion—in which auditory /aba/ and visual /aga/ inputs are fused to perceived /ada/—in a large homogenous sample of participants who consistently experienced this illusion. This enabled us to compare the neuronal responses during congruent audiovisual stimulation with incongruent audiovisual stimulation leading to the McGurk illusion while avoiding the possible confounding factor of sensory surprise that can occur when McGurk stimuli are only occasionally perceived. We found larger activity for congruent audiovisual stimuli than for incongruent (McGurk) stimuli in bilateral superior temporal cortex, extending into the primary auditory cortex. This finding suggests that superior temporal cortex prefers when auditory and visual input support the same representation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (8): 1644–1653.
Published: 01 August 2014
FIGURES
Abstract
View article
PDF
Language content and action/perception have been shown to activate common brain areas in previous neuroimaging studies. However, it is unclear whether overlapping cortical activation reflects a common neural source or adjacent, but distinct, sources. We address this issue by using multivoxel pattern analysis on fMRI data. Specifically, participants were instructed to engage in five tasks: (1) execute hand actions (AE), (2) observe hand actions (AO), (3) observe nonbiological motion (MO), (4) read action verbs, and (5) read nonaction verbs. A classifier was trained to distinguish between data collected from neural motor areas during (1) AE versus MO and (2) AO versus MO. These two algorithms were then used to test for a distinction between data collected during the reading of action versus nonaction verbs. The results show that the algorithm trained to distinguish between AE and MO distinguishes between word categories using signal recorded from the left parietal cortex and pre-SMA, but not from ventrolateral premotor cortex. In contrast, the algorithm trained to distinguish between AO and MO discriminates between word categories using the activity pattern in the left premotor and left parietal cortex. This shows that the sensitivity of premotor areas to language content is more similar to the process of observing others acting than to acting oneself. Furthermore, those parts of the brain that show comparable neural pattern for action execution and action word comprehension are high-level integrative motor areas rather than low-level motor areas.