Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Mauricio R. Delgado
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (9): 2569–2581.
Published: 01 September 2011
FIGURES
| View All (4)
Abstract
View articletitled, The Influence of Emotion Regulation on Decision-making under Risk
View
PDF
for article titled, The Influence of Emotion Regulation on Decision-making under Risk
Cognitive strategies typically involved in regulating negative emotions have recently been shown to also be effective with positive emotions associated with monetary rewards. However, it is less clear how these strategies influence behavior, such as preferences expressed during decision-making under risk, and the underlying neural circuitry. That is, can the effective use of emotion regulation strategies during presentation of a reward–conditioned stimulus influence decision-making under risk and neural structures involved in reward processing such as the striatum? To investigate this question, we asked participants to engage in imagery-focused regulation strategies during the presentation of a cue that preceded a financial decision-making phase. During the decision phase, participants then made a choice between a risky and a safe monetary lottery. Participants who successfully used cognitive regulation, as assessed by subjective ratings about perceived success and facility in implementation of strategies, made fewer risky choices in comparison with trials where decisions were made in the absence of cognitive regulation. Additionally, BOLD responses in the striatum were attenuated during decision-making as a function of successful emotion regulation. These findings suggest that exerting cognitive control over emotional responses can modulate neural responses associated with reward processing (e.g., striatum) and promote more goal-directed decision-making (e.g., less risky choices), illustrating the potential importance of cognitive strategies in curbing risk-seeking behaviors before they become maladaptive (e.g., substance abuse).
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (6): 1029–1043.
Published: 01 June 2006
Abstract
View articletitled, Performance Feedback Drives Caudate Activation in a Phonological Learning Task
View
PDF
for article titled, Performance Feedback Drives Caudate Activation in a Phonological Learning Task
Adults have difficulty discriminating nonnative phonetic contrasts, but under certain circumstances training can lead to improvement in this ability. Despite the ubiquitous use of performance feedback in training paradigms in this and many other domains, the mechanisms by which feedback affects learning are not well understood. In this event-related functional magnetic resonance imaging study, we examined how performance feedback is processed during perceptual learning. Thirteen Japanese speakers for whom the English phonemes [r] and [l] were nondistinct performed an identification task of the words “road” and “load” that has been shown to be effective in inducing learning only when performance feedback is present. Each subject performed alternating runs of training with and without feedback, followed by performance of a card-guessing task with monetary reward and punishment outcomes. We found that the caudate nucleus was more robustly activated bilaterally when performing the perceptual identification task with feedback than without feedback, and the right caudate nucleus also showed a differential response to positive and negative feedback. Moreover, using a within-subjects design, we found that the caudate nucleus also showed a similar activation pattern to monetary reward and punishment outcomes in the card-guessing task. These results demonstrate that the caudate responds to positive and negative feedback during learning in a manner analogous to its processing of extrinsic affective reinforcers and indicate that this region may be a critical moderator of the influence of feedback on learning. These findings impact our broader understanding of the mechanisms underlying nondeclarative learning and language acquisition.