Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-8 of 8
Maurizio Corbetta
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (9): 1766–1783.
Published: 01 August 2021
FIGURES
| View All (5)
Abstract
View article
PDF
It has been proposed that at least two distinct processes are engaged during task-switching: reconfiguration of the currently relevant task-set and interference resolution arising from the competing task-set. Whereas in healthy individuals the two are difficult to disentangle, their disruption is thought to cause different impairments in brain-damaged patients. Yet, the observed deficits are inconsistent across studies and do not allow drawing conclusions regarding their independence. Forty-one brain tumor patients were tested on a task-switching paradigm. We compared their performance between switch and repeat trials (switch cost) to assess rule reconfiguration, and between trials requiring the same response (congruent) and a different response for the two tasks (incongruent) to assess interference control. In line with previous studies, we found the greatest proportion of errors on incongruent trials, suggesting an interference control impairment. However, a closer look at the distribution of errors between two task rules revealed a rule perseveration impairment: Patients with high error rate on incongruent trials often applied only one task rule throughout the task and less frequently switched to the alternative one. Multivariate lesion-symptom mapping analysis unveiled the relationship between lesions localized in left orbitofrontal and posterior subcortical regions and perseveration scores, measured as absolute difference in accuracy between two task rules. This finding points to a more severe task-setting impairment, not reflected as a mere switching deficit, but instead as a difficulty in creating multiple stable task representations, in line with recent accounts of OFC functions suggesting its critical role in representing task states.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (3): 551–568.
Published: 01 March 2014
FIGURES
| View All (7)
Abstract
View article
PDF
We investigated the functional properties of a previously described cingulo-opercular network (CON) putatively involved in cognitive control. Analyses of common fMRI task-evoked activity during perceptual and episodic memory search tasks that differently recruited the dorsal attention (DAN) and default mode network (DMN) established the generality of this network. Regions within the CON (anterior insula/frontal operculum and anterior cingulate/presupplementary cortex) displayed sustained signals during extended periods in which participants searched for behaviorally relevant information in a dynamically changing environment or from episodic memory in the absence of sensory stimulation. The CON was activated during all phases of both tasks, which involved trial initiation, target detection, decision, and response, indicating its consistent involvement in a broad range of cognitive processes. Functional connectivity analyses showed that the CON flexibly linked with the DAN or DMN regions during perceptual or memory search, respectively. Aside from the CON, only a limited number of regions, including the lateral pFC, showed evidence of domain-general sustained activity, although in some cases the common activations may have reflected the functional-anatomical variability of domain-specific regions rather than a true domain generality. These additional regions also showed task-dependent functional connectivity with the DMN and DAN, suggesting that this feature is not a specific marker of cognitive control. Finally, multivariate clustering analyses separated the CON from other frontoparietal regions previously associated with cognitive control, indicating a unique fingerprint. We conclude that the CON's functional properties and interactions with other brain regions support a broad role in cognition, consistent with its characterization as a task control network.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (1): 107–119.
Published: 01 January 2014
FIGURES
| View All (5)
Abstract
View article
PDF
The default mode network is active during restful wakefulness and suppressed during goal-driven behavior. We hypothesize that inhibitory interference with spontaneous ongoing, that is, not task-driven, activity in the angular gyrus (AG), one of the core regions of the default mode network, will enhance the dominant idling EEG alpha rhythms observed in the resting state. Fifteen right-handed healthy adult volunteers underwent to this study. Compared with sham stimulation, magnetic stimulation (1 Hz for 1 min) over both left and right AG, but not over FEF or intraparietal sulcus, core regions of the dorsal attention network, enhanced the dominant alpha power density (8–10 Hz) in occipitoparietal cortex. Furthermore, right AG-rTMS enhanced intrahemispheric alpha coherence (8–10 Hz). These results suggest that AG plays a causal role in the modulation of dominant low-frequency alpha rhythms in the resting-state condition.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (1): 63–80.
Published: 01 January 2014
FIGURES
| View All (5)
Abstract
View article
PDF
Eye gaze is a powerful cue for orienting attention in space. Studies examining whether gaze and symbolic cues recruit the same neural mechanisms have found mixed results. We tested whether there is a specialized attentional mechanism for social cues. We separately measured BOLD activity during orienting and reorienting attention following predictive gaze and symbolic cues. Results showed that gaze and symbolic cues exerted their influence through the same neural networks but also produced some differential modulations. Dorsal frontoparietal regions in left intraparietal sulcus (IPS) and bilateral MT + /lateral occipital cortex only showed orienting effects for symbolic cues, whereas right posterior IPS showed larger validity effects following gaze cues. Both exceptions may reflect the greater automaticity of gaze cues: Symbolic orienting may require more effort, while disengaging attention during reorienting may be more difficult following gaze cues. Face-selective regions, identified with a face localizer, showed selective activations for gaze cues reflecting sensory processing but no attentional modulations. Therefore, no evidence was found linking face-selective regions to a hypothetical, specialized mechanism for orienting attention to gaze cues. However, a functional connectivity analysis showed greater connectivity between face-selective regions and right posterior IPS, posterior STS, and inferior frontal gyrus during gaze cueing, consistent with proposals that face-selective regions may send gaze signals to parts of the dorsal and ventral frontoparietal attention networks. Finally, although the default-mode network is thought to be involved in social cognition, this role does not extend to gaze orienting as these regions were more deactivated following gaze cues and showed less functional connectivity with face-selective regions during gaze cues.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (12): 2363–2371.
Published: 01 December 2012
FIGURES
| View All (4)
Abstract
View article
PDF
TMS interference over right intraparietal sulcus (IPS) causally disrupts behaviorally and EEG rhythmic correlates of endogenous spatial orienting before visual target presentation [Capotosto, P., Babiloni, C., Romani, G. L., & Corbetta, M. Differential contribution of right and left parietal cortex to the control of spatial attention: A simultaneous EEG-rTMS study. Cerebral Cortex, 22 , 446–454, 2012; Capotosto, P., Babiloni, C., Romani, G. L., & Corbetta, M. Fronto-parietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. Journal of Neuroscience, 29, 5863–5872, 2009]. Here we combine data from our previous studies to examine whether right parietal TMS during spatial orienting also impairs stimulus-driven reorienting or the ability to efficiently process unattended stimuli, that is, stimuli outside the current focus of attention. Healthy volunteers ( n = 24) performed a Posner spatial cueing task while their EEG activity was being monitored. Repetitive TMS (rTMS) was applied for 150 msec simultaneously to the presentation of a central arrow directing spatial attention to the location of an upcoming visual target. Right IPS-rTMS impaired target detection, especially for stimuli presented at unattended locations; it also caused a modulation of the amplitude of parieto-occipital positive ERPs peaking at about 480 msec (P3) post-target. The P3 significantly decreased for unattended targets and significantly increased for attended targets after right IPS-rTMS as compared with sham stimulation. Similar effects were obtained for left IPS stimulation albeit in a smaller group of volunteers. We conclude that disruption of anticipatory processes in right IPS has prolonged effects that persist during target processing. The P3 decrement may reflect interference with postdecision processes that are part of stimulus-driven reorienting. Right IPS is a node of functional interaction between endogenous spatial orienting and stimulus-driven reorienting processes in human vision.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (3): 508–523.
Published: 01 April 2002
Abstract
View article
PDF
We investigated neural correlates of human visual orienting using event-related functional magnetic resonance imaging (fMRI). When subjects voluntarily directed attention to a peripheral location, we recorded robust and sustained signals uniquely from the intraparietal sulcus (IPs) and superior frontal cortex (near the frontal eye field, FEF). In the ventral IPs and FEF only, the blood oxygen level dependent signal was modulated by the direction of attention. The IPs and FEF also maintained the most sustained level of activation during a 7-sec delay, when subjects maintained attention at the peripheral cued location (working memory). Therefore, the IPs and FEF form a dorsal network that controls the endogenous allocation and maintenance of visuospatial attention. A separate right hemisphere network was activated by the detection of targets at unattended locations. Activation was largely independent of the target's location (visual field). This network included among other regions the right temporo-parietal junction and the inferior frontal gyrus. We propose that this cortical network is important for reorienting to sensory events.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1997) 9 (5): 648–663.
Published: 01 October 1997
Abstract
View article
PDF
Nine previous positron emission tomography (PET) studies of human visual information processing were reanalyzed to determine the consistency across experiments of blood flow decreases during active tasks relative to passive viewing of the same stimulus array. Areas showing consistent decreases during active tasks included posterior cingulate/precuneous (Brodmann area, BA 31/7), left (BAS 40 and 39/19) and right (BA 40) inferior parietal cortex, left dorsolateral frontal cortex (BA S), left lateral inferior frontal cortex (BA 10/47), left inferior temporal gyrus @A 20), a strip of medial frontal regions running along a dorsal-ventral axis (BAs 8, 9, 10, and 32), and the right amygdala. Experiments involving language-related processes tended to show larger decreases than nonlanguage experiments. This trend mainly reflected blood flow increases at certain areas in the passive conditions of the language experiments (relative to a fixation control in which no task stimulus was present) and slight blood flow decreases in the passive conditions of the nonlanguage experiments. When the active tasks were referenced to the fixation condition, the overall size of blood flow decreases in language and nonlanguage tasks were the same, but differences were found across cortical areas. Decreases were more pronounced in the posterior cingulate/precuneous (BAS 31/7) and right inferior parietal cortex (BA 40) during language-related tasks and more pronounced in left inferior frontal cortex (BA 10/47) during nonlanguage tasks. Blood flow decreases did not generally show significant differences across the active task states within an experiment, but a verb-generation task produced larger decreases than a read task in right and left inferior parietal lobe (BA 40) and the posterior cingulate/precuneous (BA 31/7), while the read task produced larger decreases in left lateral inferior frontal cortex (BA 10/47). These effects mirrored those found between experiments in the language-nonlanguage comparison. Consistent active minus passive decreases may reflect decreased activity caused by active task processes that generalize over tasks or increased activity caused by passive task processes that are suspended during the active tasks. Increased activity during the passive condition might reflect ongoing processes, such as unconstrained verbally mediated thoughts and monitoring of the external environment, body, and emotional state.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1997) 9 (5): 624–647.
Published: 01 October 1997
Abstract
View article
PDF
Nine positron emission tomography (PET) studies of human visual information processing were reanalyzed to determine the consistency across experiments of blood flow increases during active tasks relative to passive viewing of the same stimulus array. No consistent blood flow increases were found in cerebral cortex outside of the visual system, but increases were seen in the thalamus and cerebellum. Although most tasks involve increases in arousal, establishing an intention or behavioral goal, setting up control structures for sequencing task operations, detecting targets, etc., these operations do not produce blood flow increases, detectable with the present methods, in localized cortical regions that are common across tasks. Common subcortical regions, however, may be involved. A left cerebellar and a medial cerebellar focus reflected motor-related processes. Blood flow increases in these regions only occurred in experiments in which the subject made an overt response and were largest when the response was made in the active but not passive condition. These motor-related processes were more complex than simple motor execution, however, since increases were still present when the response was made in both the active and passive conditions. These cerebellar increases may reflect processes related to response selection.Blood flow increases in a right cerebellar region were not motor-related. Increases were not modulated by the presence or absence of motor responses during either the active or passive conditions, and increases were sensitive to within-experiment variables that held the motor response constant. Increases occurred in both language and nonlanguage tasks and appeared to involve a general nonmotor process, but the nature of that process was difficult to specify. A right thalamic focus was sensitive to variables related to focal attention, suggesting that this region was involved in attentional engagement. Right thalamic increases were also correlated over conditions with increases in the left and medial cerebellum, perhaps reflecting additional contributions from motor-related nuclei receiving cerebellar projections. Blood flow increases in a left thalamic focus were completely uncorrelated over conditions with increases in the right thalamus, indicating that it was involved in different functions. Both the left thalamus and right cerebellum yielded larger blood flow increases when subjects performed a complex rather than simple language task, possibly reflecting a language-related pathway. Blood flow increases in the left thalamus were also observed, however, during nonlanguage tasks.