Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Melissa C. Duff
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (2): 186–201.
Published: 01 February 2019
FIGURES
| View All (6)
Abstract
View article
PDF
It is well established that the hippocampus is critical for memory. Recent evidence suggests that one function of hippocampal memory processing is to optimize how people actively explore the world. Here we demonstrate that the link between the hippocampus and exploration extends even to the moment-to-moment use of eye movements during visuospatial memory encoding. In Experiment 1, we examined relationships between study-phase eye movements in healthy individuals and subsequent performance on a spatial reconstruction test. In addition to quantitative measures of viewing behaviors (e.g., how many fixations or saccades were deployed during study), we used the information–theoretic measure of entropy to assess the amount of randomness or disorganization in participants' scanning behaviors. We found that the use of scanpaths during study that were lower in entropy (e.g., more organized, less random) predicted more accurate spatial reconstruction both within and between participants. Scanpath entropy was a better predictor of reconstruction accuracy than were the quantitative measures of viewing. In Experiment 2, we found that individuals with hippocampal amnesia tended to engage in viewing patterns that were higher in entropy (less organized) relative to healthy comparisons. These findings reveal a critical role of the hippocampus in guiding eye movement exploration to optimize visuospatial relational memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (5): 680–697.
Published: 01 May 2018
FIGURES
| View All (8)
Abstract
View article
PDF
Converging evidence points to a role for the hippocampus in statistical learning, but open questions about its necessity remain. Evidence for necessity comes from Schapiro and colleagues who report that a single patient with damage to hippocampus and broader medial temporal lobe cortex was unable to discriminate new from old sequences in several statistical learning tasks. The aim of the current study was to replicate these methods in a larger group of patients who have either damage localized to hippocampus or broader medial temporal lobe damage, to ascertain the necessity of the hippocampus in statistical learning. Patients with hippocampal damage consistently showed less learning overall compared with healthy comparison participants, consistent with an emerging consensus for hippocampal contributions to statistical learning. Interestingly, lesion size did not reliably predict performance. However, patients with hippocampal damage were not uniformly at chance and demonstrated above-chance performance in some task variants. These results suggest that hippocampus is necessary for statistical learning levels achieved by most healthy comparison participants but significant hippocampal pathology alone does not abolish such learning.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (2): 475–481.
Published: 01 February 2012
FIGURES
Abstract
View article
PDF
Functional neuroimaging studies suggest that the medial PFC (mPFC) is a key component of a large-scale neural system supporting a variety of self-related processes. However, it remains unknown whether the mPFC is critical for such processes. In this study, we used a human lesion approach to examine this question. We administered a standard trait judgment paradigm [Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. Finding the self? An event-related fMRI study. Journal of Cognitive Neuroscience, 14, 785–794, 2002] to patients with focal brain damage to the mPFC. The self-reference effect (SRE), a memory advantage conferred by self-related processing, served as a measure of intact self-processing ability. We found that damage to the mPFC abolished the SRE. The results demonstrate that the mPFC is necessary for the SRE and suggest that this structure is important for self-referential processing and the neural representation of self.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (12): 3862–3873.
Published: 01 December 2011
FIGURES
| View All (4)
Abstract
View article
PDF
Medial temporal lobe (MTL) contributions to the brief maintenance of visual representations were evaluated by studying a group of patients with MTL damage. Eye movements of patients and healthy comparison subjects were tracked while performing a visual search for a target among complex stimuli of varying similarity to that target. Despite the task having no imposed delays, patients were impaired behaviorally, and eye movement measures showed abnormally rapid degradation of target representations in the patients. Eye movement data showed a modulation of the duration of fixations as a function of the similarity of fixated array lures to the target, but the effect was attenuated in patients during long fixation paths away from the sample target. This effect manifested despite patients' shorter searches and more frequent fixations of the sample target. Novel techniques provided unique insight into visual representation without healthy MTL, which may support maintenance of information through hippocampal-dependent relational binding.
Includes: Supplementary data