Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Melissa E. Libertus
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (8): 1212–1228.
Published: 01 August 2023
FIGURES
Abstract
View article
PDF
Human populations show large individual differences in math performance and math learning abilities. Early math skill acquisition is critical for providing the foundation for higher quantitative skill acquisition and succeeding in modern society. However, the neural bases underlying individual differences in math competence remain unclear. Modern neuroimaging techniques allow us to not only identify distinct local cortical regions but also investigate large-scale neural networks underlying math competence both structurally and functionally. To gain insights into the neural bases of math competence, this review provides an overview of the structural and functional neural markers for math competence in both typical and atypical populations of children and adults. Although including discussion of arithmetic skills in children, this review primarily focuses on the neural markers associated with complex math skills. Basic number comprehension and number comparison skills are outside the scope of this review. By synthesizing current research findings, we conclude that neural markers related to math competence are not confined to one particular region; rather, they are characterized by a distributed and interconnected network of regions across the brain, primarily focused on frontal and parietal cortices. Given that human brain is a complex network organized to minimize the cost of information processing, an efficient brain is capable of integrating information from different regions and coordinating the activity of various brain regions in a manner that maximizes the overall efficiency of the network to achieve the goal. We end by proposing that frontoparietal network efficiency is critical for math competence, which enables the recruitment of task-relevant neural resources and the engagement of distributed neural circuits in a goal-oriented manner. Thus, it will be important for future studies to not only examine brain activation patterns of discrete regions but also examine distributed network patterns across the brain, both structurally and functionally.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (2): 226–240.
Published: 01 February 2023
FIGURES
| View All (7)
Abstract
View article
PDF
How does our brain understand the number five when it is written as an Arabic numeral, and when presented as five fingers held up? Four facets have been implicated in adult numerical processing: semantic, visual, manual, and phonological/verbal. Here, we ask how the brain represents each, using a combination of tasks and stimuli. We collected fMRI data from adult participants while they completed our novel “four number code” paradigm. In this paradigm, participants viewed one of two stimulus types to tap into the visual and manual number codes, respectively. Concurrently, they completed one of two tasks to tap into the semantic and phonological/verbal number codes, respectively. Classification analyses revealed that neural codes representing distinctions between the number comparison and phonological tasks were generalizable across format (e.g., Arabic numerals to hands) within intraparietal sulcus (IPS), angular gyrus, and precentral gyrus. Neural codes representing distinctions between formats were generalizable across tasks within visual areas such as fusiform gyrus and calcarine sulcus, as well as within IPS. Our results identify the neural facets of numerical processing within a single paradigm and suggest that IPS is sensitive to distinctions between semantic and phonological/verbal, as well as visual and manual, facets of number representations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (12): 4094–4105.
Published: 01 December 2011
FIGURES
| View All (4)
Abstract
View article
PDF
Several major cognitive neuroscience models have posited that focal spatial attention is required to integrate different features of an object to form a coherent perception of it within a complex visual scene. Although many behavioral studies have supported this view, some have suggested that complex perceptual discrimination can be performed even with substantially reduced focal spatial attention, calling into question the complexity of object representation that can be achieved without focused spatial attention. In the present study, we took a cognitive neuroscience approach to this problem by recording cognition-related brain activity both to help resolve the questions about the role of focal spatial attention in object categorization processes and to investigate the underlying neural mechanisms, focusing particularly on the temporal cascade of these attentional and perceptual processes in visual cortex. More specifically, we recorded electrical brain activity in humans engaged in a specially designed cued visual search paradigm to probe the object-related visual processing before and during the transition from distributed to focal spatial attention. The onset times of the color popout cueing information, indicating where within an object array the subject was to shift attention, was parametrically varied relative to the presentation of the array (i.e., either occurring simultaneously or being delayed by 50 or 100 msec). The electrophysiological results demonstrate that some levels of object-specific representation can be formed in parallel for multiple items across the visual field under spatially distributed attention, before focal spatial attention is allocated to any of them. The object discrimination process appears to be subsequently amplified as soon as focal spatial attention is directed to a specific location and object. This set of novel neurophysiological findings thus provides important new insights on fundamental issues that have been long-debated in cognitive neuroscience concerning both object-related processing and the role of attention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (12): 2398–2406.
Published: 01 December 2009
Abstract
View article
PDF
Behavioral studies show that infants are capable of discriminating the number of objects or events in their environment, while also suggesting that number discrimination in infancy may be ratio-dependent. However, due to limitations of the dependent measures used with infant behavioral studies, the evidence for ratio dependence falls short of the vast psychophysical datasets that have established ratio dependence, and thus, adherence to Weber's Law in adults and nonhuman animals. We addressed this issue in two experiments that presented 7-month-old infants with familiar and novel numerosities while electroencephalogram measures of their brain activity were recorded. These data provide convergent evidence that the brains of 7-month-old infants detected numerical novelty. Alpha-band and theta-band oscillations both differed for novel and familiar numerical values. Most importantly, spectral power in the alpha band over midline and right posterior scalp sites was modulated by the ratio between the familiar and novel numerosities. Our findings provide neural evidence that numerical discrimination in infancy is ratio dependent and follows Weber's Law, thus indicating continuity of these cognitive processes over development. Results are also consistent with the idea that networks in the frontal and parietal cortices support ratio-dependent number discrimination in the first year of human life, consistent with what has been reported in neuroimaging studies in adults and older children.
Journal Articles
Jessica F. Cantlon, Melissa E. Libertus, Philippe Pinel, Stanislas Dehaene, Elizabeth M. Brannon ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (11): 2217–2229.
Published: 01 November 2009
Abstract
View article
PDF
As literate adults, we appreciate numerical values as abstract entities that can be represented by a numeral, a word, a number of lines on a scorecard, or a sequence of chimes from a clock. This abstract, notation-independent appreciation of numbers develops gradually over the first several years of life. Here, using functional magnetic resonance imaging, we examine the brain mechanisms that 6- and 7-year-old children and adults recruit to solve numerical comparisons across different notation systems. The data reveal that when young children compare numerical values in symbolic and nonsymbolic notations, they invoke the same network of brain regions as adults including occipito-temporal and parietal cortex. However, children also recruit inferior frontal cortex during these numerical tasks to a much greater degree than adults. Our data lend additional support to an emerging consensus from adult neuroimaging, nonhuman primate neurophysiology, and computational modeling studies that a core neural system integrates notation-independent numerical representations throughout development but, early in development, higher-order brain mechanisms mediate this process.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2008) 20 (2): 193–203.
Published: 01 February 2008
Abstract
View article
PDF
Behavioral studies have demonstrated that time perception in adults, children, and nonhuman animals is subject to Weber's Law. More specifically, as with discriminations of other features, it has been found that it is the ratio between two durations rather than their absolute difference that controls the ability of an animal to discriminate them. Here, we show that scalp-recorded event-related electrical brain potentials (ERPs) in both adults and 10-month-old human infants, in response to changes in interstimulus interval (ISI), appear to obey the scalar property found in time perception in adults, children, and nonhuman animals. Using a timing-interval oddball paradigm, we tested adults and infants in conditions where the ratio between the standard and deviant interval in a train of homogeneous auditory stimuli varied such that there was a 1:4 (only for the infants), 1:3, 1:2, and 2:3 ratio between the standard and deviant intervals. We found that the amplitude of the deviant-triggered mismatch negativity ERP component (deviant-ISI ERP minus standard-ISI ERP) varied as a function of the ratio of the standard to deviant interval. Moreover, when absolute values were varied and ratio was held constant, the mismatch negativity did not vary.