Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Michele T. Diaz
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (12): 2798–2811.
Published: 01 December 2014
FIGURES
| View All (7)
Abstract
View article
PDF
Changes in language functions during normal aging are greater for phonological compared with semantic processes. To investigate the behavioral and neural basis for these age-related differences, we used fMRI to examine younger and older adults who made semantic and phonological decisions about pictures. The behavioral performance of older adults was less accurate and less efficient than younger adults' in the phonological task but did not differ in the semantic task. In the fMRI analyses, the semantic task activated left-hemisphere language regions, and the phonological task activated bilateral cingulate and ventral precuneus. Age-related effects were widespread throughout the brain and most often expressed as greater activation for older adults. Activation was greater for younger compared with older adults in ventral brain regions involved in visual and object processing. Although there was not a significant Age × Condition interaction in the whole-brain fMRI results, correlations examining the relationship between behavior and fMRI activation were stronger for younger compared with older adults. Our results suggest that the relationship between behavior and neural activation declines with age, and this may underlie some of the observed declines in performance.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (11): 3586–3597.
Published: 01 November 2011
FIGURES
Abstract
View article
PDF
Although the left hemisphere's prominence in language is well established, less emphasis has been placed on possible roles for the right hemisphere. Behavioral, patient, and neuroimaging research suggests that the right hemisphere may be involved in processing figurative language. Additionally, research has demonstrated that context can modify language processes and facilitate comprehension. Here we investigated how figurativeness and context influenced brain activation, with a specific interest in right hemisphere function. Previous work in our laboratory indicated that novel stimuli engaged right inferior frontal gyrus (IFG) and that both novel and familiar metaphors engaged right IFG and right temporal pole. The graded salience hypothesis proposes that context may lessen integration demands, increase the salience of metaphors, and thereby reduce right hemisphere recruitment for metaphors. In the present study, fMRI was used to investigate brain function, whereas participants read literal and metaphoric sentences that were preceded by either a congruent or an incongruent literal sentence. Consistent with prior research, all sentences engaged traditional left hemisphere regions. Differences between metaphors and literal sentences were observed, but only in the left hemisphere. In contrast, a main effect of congruence was found in the right IFG, the right temporal pole, and the dorsal medial pFC. Partially consistent with the graded salience hypothesis, our results highlight the strong influence of context on language, demonstrate the importance of the right hemisphere in discourse, and suggest that, in a wider discourse context, congruence has a greater influence on right hemisphere recruitment than figurativeness.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (11): 1768–1775.
Published: 01 November 2007
Abstract
View article
PDF
A briefly exposed visual stimulus may not be consciously perceived if it is preceded and followed by a dissimilar visual pattern or mask. Despite the subject's lack of awareness, prior behavioral studies have shown that such masked stimuli, nevertheless, engage domain-specific processes [Dehaene, S., Naccache, L., Cohen, L., Le Bihan, D., Mangin, J.-F., Poline, J.-B., et al. Cerebral mechanisms of word masking and unconscious repetition priming. Nature Neuroscience, 4 , 752–758, 2001; Bar, M., & Biederman, I. Subliminal visual priming. Psychological Science, 9 , 464–469, 1998; Dehaene, S., Naccache, L., Le Clec'H, G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., et al. Imaging unconscious semantic priming. Nature, 395 , 597–600, 1998; Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., & Jenike, M. A. Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. Journal of Neuroscience, 18 , 411–418, 1998; Marcel, A. J. Conscious and unconscious perception: Experiments on visual masking and word recognition. Cognitive Psychology, 15 , 197–237, 1983]. Masking thus provides a method for identifying language processes that are preattentive and automatic. Functional magnetic resonance imaging used in concert with masking may identify brain regions engaged by these unconscious language processes. In an adaptation design, subjects viewed a continuous stream of masked words and masked nonwords while performing an unrelated detection task, in which they were asked to make a response to a visible colored nonword stimulus (i.e., ampersands in red or blue font). Most trials were masked nonwords and masked words were presented once every 12–15 sec. The task ensured participant engagement, while the masked nonword baseline controlled for perceptual and orthographic processing. Participants were naïve to the purpose of the experiment and testing indicated that they did not consciously perceive either the words or nonwords. Masked words, but not masked nonwords, strongly activated left hemisphere language regions, including Broca's area, the angular gyrus, and the lateral temporal lobe. Differential activation of the posterior corpus callosum was also observed.