Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Miguel Castelo-Branco
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Gabriel Nascimento Costa, João Valente Duarte, Ricardo Martins, Michael Wibral, Miguel Castelo-Branco
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (11): 1829–1844.
Published: 01 November 2017
FIGURES
| View All (8)
Abstract
View article
PDF
In vision, perceptual features are processed in several regions distributed across the brain. Yet, the brain achieves a coherent perception of visual scenes and objects through integration of these features, which are encoded in spatially segregated brain areas. How the brain seamlessly achieves this accurate integration is currently unknown and is referred to as the “binding problem.” Among the proposed mechanisms meant to resolve the binding problem, the binding-by-synchrony hypothesis proposes that binding is carried out by the synchronization of distant neuronal assemblies. This study aimed at providing a critical test to the binding-by-synchrony hypothesis by evaluating long-range connectivity using EEG during a motion integration visual task that entails binding across hemispheres. Our results show that large-scale perceptual binding is not associated with long-range interhemispheric gamma synchrony. However, distinct perceptual interpretations were found to correlate with changes in beta power. Increased beta activity was observed during binding under ambiguous conditions and originates mainly from parietal regions. These findings reveal that the visual experience of binding can be identified by distinct signatures of oscillatory activity, regardless of long-range gamma synchrony, suggesting that such type of synchrony does not underlie perceptual binding.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (12): 2416–2426.
Published: 01 December 2015
FIGURES
| View All (5)
Abstract
View article
PDF
It has been hypothesized that neural synchrony underlies perceptual coherence. The hypothesis of loss of central perceptual coherence has been proposed to be at the origin of abnormal cognition in autism spectrum disorders and Williams syndrome, a neurodevelopmental disorder linked with autism, and a clearcut model for impaired central coherence. We took advantage of this model of impaired holistic processing to test the hypothesis that loss of neural synchrony plays a separable role in visual integration using EEG and a set of experimental tasks requiring coherent integration of local elements leading to 3-D face perception. A profound reorganization of brain activity was identified. Neural synchrony was reduced across stimulus conditions, and this was associated with increased amplitude modulation at 25–45 Hz. This combination of a dramatic loss of synchrony despite increased oscillatory activity is strong evidence that synchrony underlies central coherence. This is the first time, to our knowledge, that dissociation between amplitude and synchrony is reported in a human model of impaired perceptual coherence, suggesting that loss of phase coherence is more directly related to disruption of holistic perception.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (11): 2624–2636.
Published: 01 November 2014
FIGURES
| View All (6)
Abstract
View article
PDF
Object and depth perception from motion cues involves the recruitment of visual dorsal stream brain areas. In 3-D structure-from-motion (SFM) perception, motion and depth information are first extracted in this visual stream to allow object categorization, which is in turn mediated by the ventral visual stream. Such interplay justifies the use of SFM paradigms to understand dorsal–ventral integration of visual information. The nature of such processing is particularly interesting to be investigated in a neurological model of cognitive dissociation between dorsal (impaired) and ventral stream (relatively preserved) processing, Williams syndrome (WS). In the current fMRI study, we assessed dorsal versus ventral stream processing by using a performance-matched 3-D SFM object categorization task. We found evidence for substantial reorganization of the dorsal stream in WS as assessed by whole-brain ANOVA random effects analysis, with subtle differences in ventral activation. Dorsal reorganization was expressed by larger medial recruitment in WS (cuneus, precuneus, and retrosplenial cortex) in contrast with controls, which showed the expected dorsolateral pattern (caudal intraparietal sulcus and lateral occipital cortex). In summary, we found a substantial reorganization of dorsal stream regions in WS in response to simple visual categories and 3-D SFM perception, with less affected ventral stream. Our results corroborate the existence of a medial dorsal pathway that provides the substrate for information rerouting and reorganization in the presence of lateral dorsal stream vulnerability. This interpretation is consistent with recent findings suggesting parallel routing of information in medial and lateral parts of dorsal stream.