Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Monica D. Rosenberg
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (10): 1810–1841.
Published: 01 September 2022
FIGURES
| View All (4)
Abstract
View article
PDF
Exposure to socioeconomic disadvantages (SED) can have negative impacts on mental health, yet SED are a multifaceted construct and the precise processes by which SED confer deleterious effects are less clear. Using a large and diverse sample of preadolescents (ages 9–10 years at baseline, n = 4038, 49% female) from the Adolescent Brain Cognitive Development Study, we examined associations among SED at both household (i.e., income–needs and material hardship) and neighborhood (i.e., area deprivation and neighborhood unsafety) levels, frontoamygdala resting-state functional connectivity, and internalizing symptoms at baseline and 1-year follow-up. SED were positively associated with internalizing symptoms at baseline and indirectly predicted symptoms 1 year later through elevated symptoms at baseline. At the household level, youth in households characterized by higher disadvantage (i.e., lower income-to-needs ratio) exhibited more strongly negative frontoamygdala coupling, particularly between the bilateral amygdala and medial OFC (mOFC) regions within the frontoparietal network. Although more strongly positive amygdala–mOFC coupling was associated with higher levels of internalizing symptoms at baseline and 1-year follow-up, it did not mediate the association between income-to-needs ratio and internalizing symptoms. However, at the neighborhood level, amygdala–mOFC functional coupling moderated the effect of neighborhood deprivation on internalizing symptoms. Specifically, higher neighborhood deprivation was associated with higher internalizing symptoms for youth with more strongly positive connectivity, but not for youth with more strongly negative connectivity, suggesting a potential buffering effect. Findings highlight the importance of capturing multilevel socioecological contexts in which youth develop to identify youth who are most likely to benefit from early interventions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (2): 241–255.
Published: 01 February 2020
FIGURES
| View All (6)
Abstract
View article
PDF
Individual differences in working memory relate to performance differences in general cognitive ability. The neural bases of such individual differences, however, remain poorly understood. Here, using a data-driven technique known as connectome-based predictive modeling, we built models to predict individual working memory performance from whole-brain functional connectivity patterns. Using n -back or rest data from the Human Connectome Project, connectome-based predictive models significantly predicted novel individuals' 2-back accuracy. Model predictions also correlated with measures of fluid intelligence and, with less strength, sustained attention. Separate fluid intelligence models predicted working memory score, as did sustained attention models, again with less strength. Anatomical feature analysis revealed significant overlap between working memory and fluid intelligence models, particularly in utilization of prefrontal and parietal regions, and less overlap in predictive features between working memory and sustained attention models. Furthermore, showing the generality of these models, the working memory model developed from Human Connectome Project data generalized to predict memory in an independent data set of 157 older adults (mean age = 69 years; 48 healthy, 54 amnestic mild cognitive impairment, 55 Alzheimer disease). The present results demonstrate that distributed functional connectivity patterns predict individual variation in working memory capability across the adult life span, correlating with constructs including fluid intelligence and sustained attention.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (2): 160–173.
Published: 01 February 2018
FIGURES
| View All (4)
Abstract
View article
PDF
Although we typically talk about attention as a single process, it comprises multiple independent components. But what are these components, and how are they represented in the functional organization of the brain? To investigate whether long-studied components of attention are reflected in the brain's intrinsic functional organization, here we apply connectome-based predictive modeling (CPM) to predict the components of Posner and Petersen's influential model of attention: alerting (preparing and maintaining alertness and vigilance), orienting (directing attention to a stimulus), and executive control (detecting and resolving cognitive conflict) [Posner, M. I., & Petersen, S. E. The attention system of the human brain. Annual Review of Neuroscience , 13 , 25–42, 1990]. Participants performed the Attention Network Task (ANT), which measures these three factors, and rested during fMRI scanning. CPMs tested with leave-one-subject-out cross-validation successfully predicted novel individual's overall ANT accuracy, RT variability, and executive control scores from functional connectivity observed during ANT performance. CPMs also generalized to predict participants' alerting scores from their resting-state functional connectivity alone, demonstrating that connectivity patterns observed in the absence of an explicit task contain a signature of the ability to prepare for an upcoming stimulus. Suggesting that significant variance in ANT performance is also explained by an overall sustained attention factor, the sustained attention CPM, a model defined in prior work to predict sustained attentional abilities, predicted accuracy, RT variability, and executive control from task-based data and predicted RT variability from resting-state data. Our results suggest that, whereas executive control may be closely related to sustained attention, the infrastructure that supports alerting is distinct and can be measured at rest. In the future, CPM may be applied to elucidate additional independent components of attention and relationships between the functional brain networks that predict them.