Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-15 of 15
Monica Fabiani
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (1): 167–186.
Published: 01 January 2020
FIGURES
| View All (8)
Abstract
View article
PDF
Despite evidence identifying the role of group membership in social cognition, the neural mechanisms associated with the perception and evaluation of nonverbal behaviors displayed by in-group versus out-group members remain unclear. Here, 42 white participants underwent electroencephalographic recording while observing social encounters involving dynamic displays of nonverbal behaviors by racial in-group and out-group avatar characters. Dynamic behaviors included approach and avoidance poses and expressions, followed by the participants' ratings of the avatars displaying them. Behaviorally, participants showed longer RTs when evaluating in-group approach behavior compared with other behaviors, possibly suggesting increased interest and attention devoted to processing positive social encounters with their in-group members. Analyses of ERPs revealed differential sensitivity of the N450 and late positivity components to social cues, with the former showing initial sensitivity to the presence of a humanoid avatar character at the beginning of social encounters and the latter showing sensitivity to dynamic nonverbal behaviors displayed by the avatars. Moreover, time–frequency analysis of electroencephalography data also identified suppression of beta-range power linked to the observation of dynamic nonverbal behaviors. Notably, the magnitude of these responses was modulated by the degree of behavioral racial in-group bias. This suggests that differential neural sensitivity to nonverbal cues while observing social encounters is associated with subsequent in-group bias manifested in the evaluation of such encounters. Collectively, these findings shed light on the mechanisms of racial in-group bias in social cognition and have implications for understanding factors related to successful interactions with individuals from diverse racial backgrounds.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (6): 1089–1102.
Published: 01 June 2017
FIGURES
| View All (7)
Abstract
View article
PDF
Research on the neural correlates of consciousness (NCC) has implicated an assortment of brain regions, ERP components, and network properties associated with visual awareness. Recently, the P3b ERP component has emerged as a leading NCC candidate. However, typical P3b paradigms depend on the detection of some stimulus change, making it difficult to separate brain processes elicited by the stimulus itself from those associated with updates or changes in visual awareness. Here we used binocular rivalry to ask whether the P3b is associated with changes in awareness even in the absence of changes in the object of awareness. We recorded ERPs during a probe-mediated binocular rivalry paradigm in which brief probes were presented over the image in either the suppressed or dominant eye to determine whether the elicited P3b activity is probe or reversal related. We found that the timing of P3b (but not its amplitude) was closely related to the timing of the report of a perceptual change rather than to the onset of the probe. This is consistent with the proposal that P3b indexes updates in conscious awareness, rather than being related to stimulus processing per se. Conversely, the probe-related P1 amplitude (but not its latency) was associated with reversal latency, suggesting that the degree to which the probe is processed increases the likelihood of a fast perceptual reversal. Finally, the response-locked P3b amplitude (but not its latency) was associated with the duration of an intermediate stage between reversals in which parts of both percepts coexist (piecemeal period). Together, the data suggest that the P3b reflects an update in consciousness and that the intensity of that process (as indexed by P3b amplitude) predicts how immediate that update is.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (8): 1513–1527.
Published: 01 August 2015
FIGURES
| View All (9)
Abstract
View article
PDF
When analyzing visual scenes, it is sometimes important to determine the relevant “grain” size. Attention control mechanisms may help direct our processing to the intended grain size. Here we used the event-related optical signal, a method possessing high temporal and spatial resolution, to examine the involvement of brain structures within the dorsal attention network (DAN) and the visual processing network (VPN) in preparation for the appropriate level of analysis. Behavioral data indicate that the small features of a hierarchical stimulus (local condition) are more difficult to process than the large features (global condition). Consistent with this finding, cues predicting a local trial were associated with greater DAN activation. This activity was bilateral but more pronounced in the left hemisphere, where it showed a frontal-to-parietal progression over time. Furthermore, the amount of DAN activation, especially in the left hemisphere and in parietal regions, was predictive of subsequent performance. Although local cues elicited left-lateralized DAN activity, no preponderantly right activity was observed for global cues; however, the data indicated an interaction between level of analysis (local vs. global) and hemisphere in VPN. They further showed that local processing involves structures in the ventral VPN, whereas global processing involves structures in the dorsal VPN. These results indicate that in our study preparation for analyzing different size features is an asymmetric process, in which greater preparation is required to focus on small rather than large features, perhaps because of their lesser salience. This preparation involves the same DAN used for other attention control operations.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (9): 1723–1737.
Published: 01 August 2015
FIGURES
| View All (8)
Abstract
View article
PDF
Information from different modalities is initially processed in different brain areas, yet real-world perception often requires the integration of multisensory signals into a single percept. An example is the McGurk effect, in which people viewing a speaker whose lip movements do not match the utterance perceive the spoken sounds incorrectly, hearing them as more similar to those signaled by the visual rather than the auditory input. This indicates that audiovisual integration is important for generating the phoneme percept. Here we asked when and where the audiovisual integration process occurs, providing spatial and temporal boundaries for the processes generating phoneme perception. Specifically, we wanted to separate audiovisual integration from other processes, such as simple deviance detection. Building on previous work employing ERPs, we used an oddball paradigm in which task-irrelevant audiovisually deviant stimuli were embedded in strings of non-deviant stimuli. We also recorded the event-related optical signal, an imaging method combining spatial and temporal resolution, to investigate the time course and neuroanatomical substrate of audiovisual integration. We found that audiovisual deviants elicit a short duration response in the middle/superior temporal gyrus, whereas audiovisual integration elicits a more extended response involving also inferior frontal and occipital regions. Interactions between audiovisual integration and deviance detection processes were observed in the posterior/superior temporal gyrus. These data suggest that dynamic interactions between inferior frontal cortex and sensory regions play a significant role in multimodal integration.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (10): 2400–2415.
Published: 01 October 2014
FIGURES
| View All (7)
Abstract
View article
PDF
We investigated the dynamics of brain processes facilitating conscious experience of external stimuli. Previously, we proposed that alpha (8–12 Hz) oscillations, which fluctuate with both sustained and directed attention, represent a pulsed inhibition of ongoing sensory brain activity. Here we tested the prediction that inhibitory alpha oscillations in visual cortex are modulated by top–down signals from frontoparietal attention networks. We measured modulations in phase-coherent alpha oscillations from superficial frontal, parietal, and occipital cortices using the event-related optical signal (EROS), a measure of neuronal activity affording high spatiotemporal resolution, along with concurrently recorded EEG, while participants performed a visual target detection task. The pretarget alpha oscillations measured with EEG and EROS from posterior areas were larger for subsequently undetected targets, supporting alpha's inhibitory role. Using EROS, we localized brain correlates of these awareness-related alpha oscillations measured at the scalp to the cuneus and precuneus. Crucially, EROS alpha suppression correlated with posterior EEG alpha power across participants. Sorting the EROS data based on EEG alpha power quartiles to investigate alpha modulators revealed that suppression of posterior alpha was preceded by increased activity in regions of the dorsal attention network and decreased activity in regions of the cingulo-opercular network. Cross-correlations revealed the temporal dynamics of activity within these preparatory networks before posterior alpha modulation. The novel combination of EEG and EROS afforded localization of the sources and correlates of alpha oscillations and their temporal relationships, supporting our proposal that top–down control from attention networks modulates both posterior alpha and awareness of visual stimuli.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (6): 887–902.
Published: 01 June 2013
FIGURES
| View All (7)
Abstract
View article
PDF
Coordination between networks of brain regions is important for optimal cognitive performance, especially in attention demanding tasks. With the event-related optical signal (a measure of changes in optical scattering because of neuronal activity) we can characterize rapidly evolving network processes by examining the millisecond-scale temporal correlation of activity in distinct regions during the preparatory period of a response mode switching task. Participants received a precue indicating whether to respond vocally or manually. They then saw or heard the letter “L” or “R,” indicating a “left” or “right” response to be implemented with the appropriate response modality. We employed lagged cross-correlations to characterize the dynamic connectivity of preparatory processes. Our results confirmed coupling of frontal and parietal cortices and the trial-dependent relationship of the right frontal cortex with response preparation areas. The frontal-to-modality-specific cortex cross-correlations revealed a pattern in which first irrelevant regions were deactivated, and then relevant regions were activated. These results provide a window into the subsecond scale network interactions that flexibly tune to task demands.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (12): 2321–2333.
Published: 01 December 2012
FIGURES
| View All (6)
Abstract
View article
PDF
Rhythmic events are common in our sensory world. Temporal regularities could be used to predict the timing of upcoming events, thus facilitating their processing. Indeed, cognitive theories have long posited the existence of internal oscillators whose timing can be entrained to ongoing periodic stimuli in the environment as a mechanism of temporal attention. Recently, recordings from primate brains have shown electrophysiological evidence for these hypothesized internal oscillations. We hypothesized that rhythmic visual stimuli can entrain ongoing neural oscillations in humans, locking the timing of the excitability cycles they represent and thus enhancing processing of subsequently predictable stimuli. Here we report evidence for entrainment of neural oscillations by predictable periodic stimuli in the alpha frequency band and show for the first time that the phase of existing brain oscillations cannot only be modified in response to rhythmic visual stimulation but that the resulting phase-locked fluctuations in excitability lead to concomitant fluctuations in visual awareness in humans. This entrainment effect was dependent on both the amount of spontaneous alpha power before the experiment and the level of 12-Hz oscillation before each trial and could not be explained by evoked activity. Rhythmic fluctuations in awareness elicited by entrainment of ongoing neural excitability cycles support a proposed role for alpha oscillations as a pulsed inhibition of cortical activity. Furthermore, these data provide evidence for the quantized nature of our conscious experience and reveal a powerful mechanism by which temporal attention as well as perceptual snapshots can be manipulated and controlled.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (9): 1941–1959.
Published: 01 September 2012
FIGURES
| View All (6)
Abstract
View article
PDF
The significance of stimuli is linked not only to their nature but also to the sequential structure in which they are embedded, which gives rise to contingency rules. Humans have an extraordinary ability to extract and exploit these rules, as exemplified by the role of grammar and syntax in language. To study the brain representations of contingency rules, we recorded ERPs and event-related optical signal (EROS; which uses near-infrared light to measure the optical changes associated with neuronal responses). We used sequences of high- and low-frequency tones varying according to three contingency rules, which were orthogonally manipulated and differed in processing requirements: A Single Repetition rule required only template matching, a Local Probability rule required relating a stimulus to its context, and a Global Probability rule could be derived through template matching or with reference to the global sequence context. ERP activity at 200–300 msec was related to the Single Repetition and Global Probability rules (reflecting access to representations based on template matching), whereas longer-latency activity (300-450 msec) was related to the Local Probability and Global Probability rules (reflecting access to representations incorporating contextual information). EROS responses with corresponding latencies indicated that the earlier activity involved the superior temporal gyrus, whereas later responses involved a fronto-parietal network. This suggests that the brain can simultaneously hold different models of stimulus contingencies at different levels of the information processing system according to their processing requirements, as indicated by the latency and location of the corresponding brain activity.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (4): 655–669.
Published: 01 April 2010
FIGURES
| View All (8)
Abstract
View article
PDF
Neuroimaging data emphasize that older adults often show greater extent of brain activation than younger adults for similar objective levels of difficulty. A possible interpretation of this finding is that older adults need to recruit neuronal resources at lower loads than younger adults, leaving no resources for higher loads, and thus leading to performance decrements [Compensation-Related Utilization of Neural Circuits Hypothesis; e.g., Reuter-Lorenz, P. A., & Cappell, K. A. Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17, 177–182, 2008]. The Compensation-Related Utilization of Neural Circuits Hypothesis leads to the prediction that activation differences between younger and older adults should disappear when task difficulty is made subjectively comparable. In a Sternberg memory search task, this can be achieved by assessing brain activity as a function of load relative to the individual's memory span, which declines with age. Specifically, we hypothesized a nonlinear relationship between load and both performance and brain activity and predicted that asymptotes in the brain activation function should correlate with performance asymptotes (corresponding to working memory span). The results suggest that age differences in brain activation can be largely attributed to individual variations in working memory span. Interestingly, the brain activation data show a sigmoid relationship with load. Results are discussed in terms of Cowan's [Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114, 2001] model of working memory and theories of impaired inhibitory processes in aging.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (7): 1380–1395.
Published: 01 July 2009
Abstract
View article
PDF
Older adults often encounter difficulties in switching between tasks, perhaps because of age-related decreases in executive function. Executive function may largely depend on connections between brain areas—connections that may become structurally and functionally weaker in aging. Here we investigated functional and structural age-related changes in switching between a spatial and a verbal task. These tasks were chosen because they are expected to differentially use the two hemispheres. Brain measures included anatomical information about anterior corpus callosum size (CC; the major commissure linking the left and right hemisphere), and the event-related optical signal (EROS). Behavioral results indicated that older adults had greater task-switching difficulties, which, however, were largely restricted to switching to the spatial task and to individuals with smaller anterior CCs. The EROS data showed both general switching-related activity in the left middle frontal gyrus (with approximately 300-msec latency) and task-specific activity in the inferior frontal gyrus, lateralized to the left for the switch-to-verbal condition and to the right for the switch-to-spatial condition. This lateralization was most evident in younger adults. In older adults, activity in the switch-to-spatial condition was lateralized to the right hemisphere in individuals with large CC, and to the left in individuals with small CC. These data suggest that (a) task switching may involve both task-general and task-specific processes; and (b) white matter changes may underlie some of the age-related problems in switching. These effects are discussed in terms of the hypothesis that aging involves some degree of cortical disconnection, both functional and anatomical.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (5): 844–858.
Published: 01 May 2006
Abstract
View article
PDF
Object recognition presumably involves activation of multiple levels of representation. Here we use the encoding-related lateralization (ERL) method [Gratton, G. The contralateral organization of visual memory: A theoretical concept and a research tool. Psychophysiology, 35, 638–647, 1998] to describe the sequential activation of several of these levels. The ERL uses divided-field encoding to generate contralaterally biased representations in the brain. The presence and nature of these representations can be demonstrated by examining the event-related potentials (ERPs) elicited by centrally presented test probes for lateralized activity corresponding to the encoding side. We recorded ERPs during a memory-search task. Memory sets were composed of two or four uppercase letters displayed half to the left and half to the right of fixation. Probe stimuli were composed of one letter presented foveally in either upper- or lowercase. Letter case was manipulated to differentiate the time course of physical and symbolic levels of letter representation. Memory set size was manipulated to examine a relational level of letter representation. We found multiple ERLs in response to the probes: (1) An early (peak = 170 msec) case-dependent (but set size independent) ERL, most evident at P7/P8, indexing the availability of a physical level of letter representation; (2) a later (200–400 msec) more diffusedly distributed ERL, independent of both letter case and set size, indexing a symbolic level of letter representation; (3) a long-latency (400–600 msec) ERL occurring at posterior sites, larger for the case match, Set Size 2 condition, indexing competition for neural representation across multiple letters. By assuming that these ERL activities track the progression of letter representation over time, we propose a model of letter processing in the context of visual working memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (4): 637–650.
Published: 01 April 2006
Abstract
View article
PDF
Cognitive aging theories emphasize the decrease in efficiency of inhibitory processes and attention control in normal aging, which, in turn, may result in reduction of working memory function. Accordingly, some of these age-related changes may be due to faster sensory memory decay or to inefficient filtering of irrelevant sensory information (sensory gating). Here, event-related brain potentials and the event-related optical signal were recorded in younger and older adults passively listening to tone trains. To determine whether age differentially affects decay of sensory memory templates over short intervals, trains were separated by delays of either 1 or 5 sec. To determine whether age affects the suppression of responses to unattended repeated stimuli, we evaluated the brain activity elicited by successive train stimuli. Some trains started with a shorter-duration stimulus (deviant trains). Results showed that both electrical and optical responses to tones were more persistent with repeated stimulation in older adults than in younger adults, whereas the effects of delay were similar in the two groups. A mismatch negativity (MMN) was elicited by the first stimulus in deviant trains. This MMN was larger for 1- than 5-sec delay, but did not differ across groups. These data suggest that age-related changes in sensory processing are likely due to inefficient filtering of repeated information, rather than to faster sensory memory decay. This inefficient filtering may be due to, or interact with, reduced attention control. Furthermore, it may increase the noise levels in the information processing system and thus contribute to problems with working memory and speed of processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2001) 13 (4): 523–536.
Published: 15 May 2001
Abstract
View article
PDF
Response competition is often considered an important contributor to the delayed reaction to stimuli for which physical and semantic information are in conflict (“Stroop” effect). Response competition implies that brain areas associated with correct and incorrect responses (e.g., left and right motor cortices) should be simultaneously activated in conflict conditions. However, there is at present little direct evidence of this phenomenon, in part because of the paucity of brain imaging techniques that can independently monitor the time course of activation of adjacent brain areas, such as the motor areas. In the present study, we show that the event-related optical signal (EROS) can provide these types of data. The results confirm the prediction that conflict trials elicit simultaneous activation of both motor cortices, whereas nonconflict trials elicit brain activity only in the contralateral motor cortex. These data support a parallel view of the human information processing system.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (6): 941–949.
Published: 01 November 2000
Abstract
View article
PDF
False memories (e.g., recognition of events that did not occur) are considered behaviorally and subjectively indistinguishable from true memories. We report that brain activity differs when true and false memories are retrieved. Strongly associated lists of words were presented to one or the other cerebral hemisphere at study. This led to lateralized brain activity for these words during a centrally presented recognition test, reflecting their lateralized encoding. This activity was absent for nonstudied but strongly associated words falsely recognized as studied items. These results indicate that studied words leave sensory signatures of study experiences that are absent for false memories. In addition, hemifield effects emerged, including a slower reaction time (RT) for false recognition of nonstudied words whose associated lists were presented to the left hemifield (i.e., right hemisphere). These false recognition responses were accompanied by frontal slow wave activity, which may reflect a differential ability of the two hemispheres with respect to semantic processing.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1995) 7 (4): 446–456.
Published: 01 October 1995
Abstract
View article
PDF
Measures of parameters of the migration of near-infrared photons through the head (attenuation, or intensity, and time-of-flight, or delay) have been proposed as a way of assessing noninvasively and in a quasicontinuous fashion changes in the scattering and absorption properties of brain tissue. These, in turn, may reflect functional changes associated with behavioral tasks. To test this hypothesis, we measured changes of photon migration parameters from scalp locations proximal to the motor cortex from four human subjects, tapping at a rate of 0.8 Hz with their left or right hand, or with their left or right foot. Tapping produced both slow effects (requiring several seconds) and fast effects (tracking the tapping frequency). Slow effects were characterized by increase and delay of the light passing through the hemisphere contralateral to the tapping hand. Fast effects consisted of changes in the light delay during hand tapping. Monte Carlo simulations based on layer models of the brain indicated that fast effects are consistent with changes in deep layers of the head (presumably in the cortex), and that slow effects are consistent with either a shift of absorbing material toward deeper layers or a reduction in scattering. These results suggest that optical parameters can monitor rapid changes of brain activity, matching the contralateral organization of the motor cortex.