Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Monicque M. Lorist
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (1): 104–118.
Published: 01 January 2021
FIGURES
| View All (5)
Abstract
View article
PDF
The intake of caffeine and the prospect of reward have both been associated with increased arousal, enhanced attention, and improved behavioral performance on cognitive tasks, but how they interact to exert these effects is not well understood. To investigate this question, we had participants engage in a two-session cued-reward cognitive task while we recorded their electrical brain activity using scalp electroencephalography. The cue indicated whether monetary reward could be received for fast and accurate responses to a color–word Stroop stimulus that followed. Before each session, participants ingested decaffeinated coffee with either caffeine (3-mg/kg bodyweight) or placebo (3-mg/kg bodyweight lactose). The behavioral results showed that both caffeine and reward-prospect improved response accuracy and speed. In the brain, reward-prospect resulted in an enlarged frontocentral slow wave (contingent negative variation, or CNV) and reduced posterior alpha power (indicating increased cortical activity) before stimulus presentation, both neural markers for preparatory attention. Moreover, the CNV enhancement for reward-prospect trials was considerably more pronounced in the caffeine condition as compared to the placebo condition. These interactive neural enhancements due to caffeine and reward-prospect were mainly visible in preparatory attention activity triggered by the cue (CNV). In addition, some interactive neural enhancements in the processing of the Stroop target stimulus that followed were also observed. The results suggest that caffeine facilitates the neural processes underlying attentional preparation and stimulus processing, especially for task-relevant information.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (10): 2057–2069.
Published: 01 October 2012
FIGURES
| View All (7)
Abstract
View article
PDF
With increasing age, people experience more difficulties with suppressing irrelevant information, which may have a major impact on cognitive functioning. The extent of decline of inhibitory functions with age is highly variable between individuals. In this study, we used ERPs and phase locking analyses to investigate neural correlates of this variability in inhibition between individuals. Older and younger participants performed a selective attention task in which relevant and irrelevant information was presented simultaneously. The participants were split into high and low performers based on their level of inhibition inefficiency, that is, the slowing of RTs induced by information that participants were instructed to ignore. P1 peak amplitudes were larger in low performers than in high performers, indicating that low performers were less able to suppress the processing of irrelevant stimuli. Phase locking analyses were used as a measure of functional connectivity. Efficient inhibition in both age groups was related to the increased functional connectivity in the alpha band between frontal and occipito-parietal ROIs in the prestimulus interval. In addition, increased power in the alpha band in occipito-parietal ROIs was related to better inhibition both before and after stimulus onset. Phase locking in the upper beta band before and during stimulus presentation between frontal and occipito-parietal ROIs was related to a better performance in older participants only, suggesting that this is an active compensation mechanism employed to maintain adequate performance. In addition, increased top–down modulation and increased power in the alpha band appears to be a general mechanism facilitating inhibition in both age groups.