Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Motoaki Sugiura
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (3): 699–715.
Published: 01 March 2011
Abstract
View article
PDF
Special processes recruited during the recognition of personally familiar people have been assumed to reflect the rich episodic and semantic information that selectively represents each person. However, the processes may also include person nonselective ones, which may require interpretation in terms beyond the memory mechanism. To examine this possibility, we assessed decrease in differential activation during the second presentation of an identical face (repetition suppression) as an index of person selectivity. During fMRI, pictures of personally familiar, famous, and unfamiliar faces were presented to healthy subjects who performed a familiarity judgment. Each face was presented once in the first half of the experiment and again in the second half. The right inferior temporal and left inferior frontal gyri were activated during the recognition of both types of familiar faces initially, and this activation was suppressed with repetition. Among preferentially activated regions for personally familiar over famous faces, robust suppression in differential activation was exhibited in the bilateral medial and anterior temporal structures, left amygdala, and right posterior STS, all of which are known to process episodic and semantic information. On the other hand, suppression was minimal in the posterior cingulate, medial prefrontal, right inferior frontal, and intraparietal regions, some of which were implicated in social cognition and cognitive control. Thus, the recognition of personally familiar people is characterized not only by person-selective representation but also by nonselective processes requiring a research framework beyond the memory mechanism, such as a social adaptive response.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (10): 2226–2237.
Published: 01 October 2010
FIGURES
| View All (4)
Abstract
View article
PDF
Memory for person identity information consists of three main components: face-related information, name-related information, and person-related semantic information, such as the person's job title. Although previous studies have demonstrated the importance of the anterior temporal lobe (ATL) in the retrieval of associations between these kinds of information, there is no evidence concerning whether the ATL region contributes to the encoding of this memory, and whether ATL roles are dissociable between different levels of association in this memory. Using fMRI, we investigated dissociable roles within the ATL during successful encoding of this memory. During encoding, participants viewed unfamiliar faces, each paired with a job title and name. During retrieval, each learned face was presented with two job titles or two names, and participants were required to choose the correct job title or name. Successful encoding conditions were categorized by subsequent retrieval conditions: successful encoding of names and job titles (HNJ), names (HN), and job titles (HJ). The study yielded three main findings. First, the dorsal ATL showed greater activations in HNJ than in HN or HJ. Second, ventral ATL activity was greater in HNJ and HJ than in HN. Third, functional connectivity between these regions was significant during successful encoding. The results are the first to demonstrate that the dorsal and ventral ATL roles are dissociable between two steps of association, associations of person-related semantics with name and with face, and a dorsal–ventral ATL interaction predicts subsequent retrieval success of memory for person identity information.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (10): 1855–1868.
Published: 01 October 2009
Abstract
View article
PDF
Person recognition has been assumed to entail many types of person-specific cognitive responses, including retrieval of knowledge, episodic recollection, and emotional responses. To demonstrate the cortical correlates of this modular structure of multimodal person representation, we investigated neural responses preferential to personally familiar people and responses dependent on familiarity with famous people in the temporal and parietal cortices. During functional magnetic resonance imaging (fMRI) measurements, normal subjects recognized personally familiar names (personal) or famous names with high or low degrees of familiarity (high or low, respectively). Effects of familiarity with famous people (i.e., high–low) were identified in the bilateral angular gyri, the left supramarginal gyrus, the middle part of the bilateral posterior cingulate cortices, and the left precuneus. Activation preferentially relevant to personally familiar people (i.e., personal–high) was identified in the bilateral temporo-parietal junctions, the right anterolateral temporal cortices, posterior middle temporal gyrus, posterior cingulate cortex (with a peak in the posterodorsal part), and the left precuneus; these activation foci exhibited varying degrees of activation for high and low names. An equivalent extent of activation was observed for all familiar names in the bilateral temporal poles, the left orbito-insular junction, the middle temporal gyrus, and the anterior part of the posterior cingulate cortex. The results demonstrated that distinct cortical areas supported different types of cognitive responses, induced to different degrees during recognition of famous and personally familiar people, providing neuroscientific evidence for the modularity of multimodal person representation.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (2): 183–198.
Published: 01 February 2005
Abstract
View article
PDF
The recognition of both personally familiar objects and places involves nonspatial memory retrieval processes, but only personally familiar places are represented as space. Although the posterior cingulate cortex (PCC) is considered to process both types of such memories, its functional organization is poorly understood. In this event-related fMRI study, normal subjects judged familiar/unfamiliar pictures in four categories: familiar places (FP), familiar objects (FO), unfamiliar places (UP), and unfamiliar objects (UO), thus constituting a two-factorial design. A significant main effect of stimuli with greater activation in the place (FP and UP) than object (FO and UO) trials was observed bilaterally in several medial temporo-occipito-parietal regions, including the caudal PCC (cPCC) and parahippocampal gyrus. The reverse comparison revealed greater activation in the lateral inferior occipito-temporal junctions and intraparietal sulci bilaterally. A significant main effect of familiarity with greater activation in the familiar (FP and FO) than unfamiliar (UP and UO) trials was observed in the mid-dorsal PCC (mPCC), retrosplenial cortex, posterior precuneus, and the left intraparietal sulcus. Activation specific to the FP trials (as assessed by the interaction) was observed in the right posterodorsal PCC (pPCC) only. Together with data from previous functional imaging studies, the results suggest a functional segregation of human PCC with differential involvement of pPCC in spatial representations of personally familiar places and of the mPCC and retrosplenial cortex in episodic retrieval of personally familiar places and objects. Activation of the left intraparietal sulcus may reflect retrieval of memories related to object manipulation.