Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Natalie A. Phillips
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (9): 1367–1375.
Published: 01 September 2005
Abstract
View article
PDF
Cognitive control processes enable us to adjust our behavior to changing environmental demands. Although neuropsychological studies suggest that the critical cortical region for cognitive control is the prefrontal cortex, neuro-imaging studies have emphasized the interplay of prefrontal and parietal cortices. This raises the fundamental question about the different contributions of prefrontal and parietal areas in cognitive control. It was assumed that the prefrontal cortex biases processing in posterior brain regions. This assumption leads to the hypothesis that neural activity in the prefrontal cortex should precede parietal activity in cognitive control. The present study tested this assumption by combining results from functional magnetic resonance imaging (fMRI) providing high spatial resolution and event-related potentials (ERPs) to gain high temporal resolution. We collected ERP data using a modified task-switching paradigm. In this paradigm, a situation where the same task was indicated by two different cues was compared with a situation where two cues indicated different tasks. Only the latter condition required updating of the task set. Task-set updating was associated with a midline negative ERP deflection peaking around 470 msec. We placed dipoles in regions activated in a previous fMRI study that used the same paradigm (left inferior frontal junction, right inferior frontal gyrus, right parietal cortex) and fitted their directions and magnitudes to the ERP effect. The frontal dipoles contributed to the ERP effect earlier than the parietal dipole, providing support for the view that the prefrontal cortex is involved in updating of general task representations and biases relevant stimulus-response associations in the parietal cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (1994) 6 (3): 256–266.
Published: 01 July 1994
Abstract
View article
PDF
An event-related brain potential (ERP) reflecting the acoustic-phonetic process in the phonological stage of word processing was recorded to the terminal words of spoken sentences. The peak latency of this negative-going response occurred between 270 and 300 msec after the onset of the terminal word. The independence of this response (the phonological mismatch negativity, PMN) from the ERP component known to be sensitive to semantic violations (N400) was demonstrated by manipulating sentence endings so that phonemic and semantic violations occurred together or separately. Four conditions used sentences that ended with (1) the highest Cloze probability word (e.g., “The piano was out of tune .”), (2) a word having the same initial phoneme of the highest Cloze probability word but that was, in fact, semantically anomalous (e.g., “The gambler had a streak of bad luggage. ”), (3) a word having an initial phoneme different from that of the highest Cloze probability word but that was, in fact, semantically appropriate (e.g., “Don caught the ball with his glove. ”), or (4) a word that was semantically anomalous and, therefore, had an initial phoneme that was totally unexpected given the sentence's context (e.g., “The dog chased our cat up the queen ”). Neither the PMN nor the N400 was found in the first condition. Only an N400 was observed in the second condition while only a PMN was seen in the third. Both responses were elicited in the last condition. Finally, a delayed N400 occurred to semantic violations in the second condition where the initial phoneme was identical to that of the highest Cloze probability ending. Results are discussed with regard to the Cohort model of word recognition.