Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Nathaniel D. Daw
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (3): 463–481.
Published: 01 March 2021
FIGURES
| View All (6)
Abstract
View article
PDF
Research in computational psychiatry has sought to understand the basis of compulsive behavior by relating it to basic psychological and neural mechanisms: specifically, goal-directed versus habitual control. These psychological categories have been further identified with formal computational algorithms, model-based and model-free learning, which helps to provide quantitative tools to distinguish them. Computational psychiatry may be particularly useful for examining phenomena in individuals with anorexia nervosa (AN), whose self-starvation appears both excessively goal directed and habitual. However, these laboratory-based studies have not aimed to examine complex behavior, as seen outside the laboratory, in contexts that extend beyond monetary rewards. We therefore assessed (1) whether behavior in AN was characterized by enhanced or diminished model-based behavior, (2) the domain specificity of any abnormalities by comparing learning in a food-specific (i.e., illness-relevant) context as well as in a monetary context, and (3) whether impairments were secondary to starvation by comparing learning before and after initial treatment. Across all conditions, individuals with AN, relative to healthy controls, showed an impairment in model-based, but not model-free, learning, suggesting a general and persistent contribution of habitual over goal-directed control, across domains and time points. Thus, eating behavior in individuals with AN that appears very goal-directed may be under more habitual than goal-directed control, and this is not remediated by achieving weight restoration.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (3): 508–514.
Published: 01 March 2020
FIGURES
Abstract
View article
PDF
Recent findings have shown that full-term infants engage in top–down sensory prediction, and these predictions are impaired as a result of premature birth. Here, we use an associative learning model to uncover the neuroanatomical origins and computational nature of this top–down signal. Infants were exposed to a probabilistic audiovisual association. We find that both groups (full term, preterm) have a comparable stimulus-related response in sensory and frontal lobes and track prediction error in their frontal lobes. However, preterm infants differ from their full-term peers in weaker tracking of prediction error in sensory regions. We infer that top–down signals from the frontal lobe to the sensory regions carry information about prediction error. Using computational learning models and comparing neuroimaging results from full-term and preterm infants, we have uncovered the computational content of top–down signals in young infants when they are engaged in a probabilistic associative learning.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2015) 27 (2): 319–333.
Published: 01 February 2015
FIGURES
| View All (4)
Abstract
View article
PDF
Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information—in the service of overcoming habitual, stimulus-driven responses—in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior.