Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Neil G. Muggleton
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (12): 2804–2812.
Published: 01 December 2010
FIGURES
| View All (6)
Abstract
View article
PDF
Inhibitory control mechanisms are important in a range of behaviors to prevent execution of motor acts which, having been planned, are no longer necessary. Ready examples of this can be seen in a range of sports, such as cricket and baseball, where the choice between execution or inhibition of a bat swing must be made in a brief time interval. The role of the FEFs, an area typically described in relation to eye movement functions but also involved in visual processes, was investigated in an inhibitory control task using transcranial magnetic stimulation (TMS). A stop signal task with manual responses was used, providing measures of impulsivity and inhibitory control. TMS over FEF had no effect on response generation (impulsivity, indexed by go signal RT) but disrupted inhibitory control (indexed by stop signal RT). This is the first demonstration of a role for FEF in this type of task in normal subjects in a task which did not require eye movements and complements previous TMS findings of roles for pre-SMA and inferior frontal gyrus (IFG) in inhibitory control.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (7): 1140–1151.
Published: 01 July 2007
Abstract
View article
PDF
“Priming of pop-out” is a form of implicit memory that facilitates detection of a recently inspected search target. Repeated presentation of a target's features or its spatial position improves detection speed (feature/spatial priming). This study investigated a role for the human frontal eye fields (FEFs) in the priming of color pop-out. To test the hypothesis that the FEFs play a role in short-term memory storage, transcranial magnetic stimulation (TMS) was applied during the intertrial interval. There was no effect of TMS on either spatial or feature priming. To test whether the FEFs are important when a saccade is being programmed to a repeated target color or location, TMS was applied during the search array. TMS over the left but not the right FEFs abolished spatial priming, but had no effect on feature priming. These findings demonstrate functional specialization of the left FEFs for spatial priming, and distinguish this role from target discrimination and saccade-related processes. The results suggest that the left FEFs integrate a spatial memory signal with an evolving saccade program, which facilitates saccades to a recently inspected location.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (6): 1060–1067.
Published: 01 July 2004
Abstract
View article
PDF
Frontal eye field (FEF) neurons discharge in response to behaviorally relevant stimuli that are potential targets for saccades. Distinct visual and motor processes have been dissociated in the FEF of macaque monkeys, but little is known about the visual processing capacity of FEF in humans. We used double-pulse transcranial magnetic stimulation [(d)TMS] to investigate the timing of target discrimination during visual conjunction search. We applied dual TMS pulses separated by 40 msec over the right FEF and vertex. These were applied in five timing conditions to sample separate time windows within the first 200 msec of visual processing. (d)TMS impaired search performance, reflected in reduced d′ scores. This effect was limited to a time window between 40 and 80 msec after search array onset. These parameters correspond with single-cell activity in FEF that predicts monkeys' behavioral reports on hit, miss, false alarm, and correct rejection trials. Our findings demonstrate a crucial early role for human FEF in visual target discrimination that is independent of saccade programming.