Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Nelleke C. Van Wouwe
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (5): 816–826.
Published: 01 May 2017
FIGURES
Abstract
View article
PDF
Learning the contingencies between stimulus, action, and outcomes is disrupted in disorders associated with altered dopamine (DA) function in the BG, such as Parkinson disease (PD). Although the role of DA in learning to act has been extensively investigated in PD, the role of DA in “learning to withhold” (or inhibit) action to influence outcomes is not as well understood. The current study investigated the role of DA in learning to act or to withhold action to receive rewarding, or avoid punishing outcomes, in patients with PD tested “off” and “on” dopaminergic medication ( n = 19) versus healthy controls ( n = 30). Participants performed a reward-based learning task that orthogonalized action and outcome valence (action–reward, inaction–reward, action–punishment, inaction–punishment). We tested whether DA would bias learning toward action, toward reward, or to particular action–outcome interactions. All participants demonstrated inherent learning biases preferring action with reward and inaction to avoid punishment, and this was unaffected by medication. Instead, DA produced a complex modulation of learning less natural action–outcome associations. “Off” DA medication, patients demonstrated impairments in learning to withhold action to gain reward, suggesting a difficulty to overcome a bias toward associating inaction with punishment avoidance. On DA medication, these patterns changed, and patients showed a reduced ability to learn to act to avoid punishment, indicating a bias toward action and reward. The current findings suggest that DA in PD has a complex influence on the formation of action–outcome associations, particularly those involving less natural linkages between action and outcome valence.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (5): 710–723.
Published: 01 May 2016
FIGURES
Abstract
View article
PDF
Dopamine plays a key role in a range of action control processes. Here, we investigate how dopamine depletion caused by Parkinson disease (PD) and how dopamine restoring medication modulate the expression and suppression of unintended action impulses. Fifty-five PD patients and 56 healthy controls (HCs) performed an action control task (Simon task). PD patients completed the task twice, once withdrawn from dopamine medications and once while taking their medications. PD patients experienced similar susceptibility to making fast errors in conflict trials as HCs, but PD patients were less proficient compared with HCs at suppressing incorrect responses. Administration of dopaminergic medications had no effect on impulsive error rates but significantly improved the proficiency of inhibitory control in PD patients. We found no evidence that dopamine precursors and agonists affected action control in PD differently. Additionally, there was no clear evidence that individual differences in baseline action control (off dopamine medications) differentially responded to dopamine medications (i.e., no evidence for an inverted U-shaped performance curve). Together, these results indicate that dopamine depletion and restoration therapies directly modulate the reactive inhibitory control processes engaged to suppress interference from the spontaneously activated response impulses but exert no effect on an individual's susceptibility to act on impulses.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (3): 524–539.
Published: 01 March 2011
FIGURES
| View All (7)
Abstract
View article
PDF
The ability to interact with a constantly changing environment requires a balance between maintaining the currently relevant working memory content and being sensitive to potentially relevant new information that should be given priority access to working memory. Mesocortical dopamine projections to frontal brain areas modulate working memory maintenance and flexibility. Recent neurocognitive and neurocomputational work suggests that dopamine release is transiently enhanced by induced positive affect. This ERP study investigated the role of positive affect in different aspects of information processing: in proactive control (context maintenance and updating), reactive control (flexible adaptation to incoming task-relevant information), and evaluative control in an AX -CPT task. Subjects responded to a target probe if it was preceded by a specific cue. Induced positive affect influenced the reactive and evaluative components of control (indexed by the N2 elicited by the target and by the error-related negativity elicited after incorrect responses, respectively), whereas cue-induced proactive preparation and maintenance processes remained largely unaffected (as reflected in the P3b and the contingent negative variation components of the ERP).