Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Nicholas S. Bland
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (6): 1038–1052.
Published: 02 May 2022
FIGURES
Abstract
View article
PDF
A central objective in the study of volition has been to identify how changes in neural activity relate to voluntary—“free will”—movement. The readiness potential (RP) is observed in the EEG as a slow-building signal that precedes action onset. Many consider the RP as a marker of an underlying preparatory process for initiating voluntary movement. However, the RP may emerge from ongoing slow-wave brain oscillations that influence the timing of movement initiation in a phase-dependent manner. Transcranial alternating current stimulation (tACS) enables brain oscillations to be entrained at the frequency of stimulation. We delivered tACS at a slow-wave frequency over frontocentral motor areas while participants ( n = 30) performed a simple, self-paced button press task. During the active tACS condition, participants showed a tendency to initiate actions in the phase of the tACS cycle that corresponded to increased negative potentials across the frontocentral motor region. Comparisons of premovement EEG activity observed over frontocentral and central scalp electrodes showed earlier onset and increased amplitude of RPs from active stimulation compared with sham stimulation. This suggests that movement-related activity in the brain can be modulated by the delivery of weak, nonconsciously perceptible alternating currents over frontocentral motor regions. We present novel findings that support existing theories, which suggest the timing of voluntary movement is influenced by the phase of slow-changing oscillating brain states.