Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Nicole C. Swann
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (1): 84–95.
Published: 01 January 2016
FIGURES
| View All (6)
Abstract
View article
PDF
Communication between brain areas and how they are influenced by changes in consciousness are not fully understood. One hypothesis is that brain areas communicate via oscillatory processes, utilizing network-specific frequency bands, that can be measured with metrics that reflect between-region interactions, such as coherence and phase amplitude coupling (PAC). To evaluate this hypothesis and understand how these interactions are modulated by state changes, we analyzed electrophysiological recordings in humans at different nodes of one well-studied brain network: the basal ganglia–thalamocortical loops of the motor system during loss of consciousness induced by anesthesia. We recorded simultaneous electrocorticography over primary motor cortex (M1) with local field potentials from subcortical motor regions (either basal ganglia or thalamus) in 15 movement disorder patients during anesthesia (propofol) induction as a part of their surgery for deep brain stimulation. We observed reduced coherence and PAC between M1 and the subcortical nuclei, which was specific to the beta band (∼18–24 Hz). The fact that this pattern occurs selectively in beta underscores the importance of this frequency band in the motor system and supports the idea that oscillatory interactions at specific frequencies are related to the capacity for normal brain function and behavior.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (7): 1244–1254.
Published: 01 July 2009
Abstract
View article
PDF
Substructures of the prefrontal cortex (PFC) and the medial-temporal lobe are critical for associating objects presented over time. Previous studies showing frontal and medial-temporal involvement in associative encoding have not addressed the response specificity of these regions to different aspects of the task, which include instructions to associate and binding of stimuli. This study used a novel paradigm to temporally separate these two components of the task by sequential presentation of individual images with or without associative instruction; fMRI was used to investigate the temporal involvement of the PFC and the parahippocampal cortex in encoding each component. Although both regions showed an enhanced response to the second stimulus of a pair, only the PFC had increased activation during the delay preceding a stimulus when associative instruction was given. These findings present new evidence that prefrontal and medial-temporal regions provide distinct temporal contributions during associative memory formation.