Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Nika Adamian
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2024) 36 (1): 46–70.
Published: 01 January 2024
FIGURES
| View All (10)
Abstract
View articletitled, Attentional Modulation in Early Visual Cortex: A Focused Reanalysis of Steady-state Visual Evoked Potential Studies
View
PDF
for article titled, Attentional Modulation in Early Visual Cortex: A Focused Reanalysis of Steady-state Visual Evoked Potential Studies
Steady-state visual evoked potentials (SSVEPs) are a powerful tool for investigating selective attention. Here, we conducted a combined reanalysis of multiple studies employing this technique in a variety of attentional experiments to, first, establish benchmark effect sizes of attention on amplitude and phase of SSVEPs and, second, harness the power of a large data set to test more specific hypotheses. Data of eight published SSVEP studies were combined, in which human participants ( n = 135 in total) attended to flickering random dot stimuli based on their defining features (e.g., location, color, luminance, or orientation) or feature conjunctions. The reanalysis established that, in all the studies, attention reliably enhanced amplitudes, with color-based attention providing the strongest effect. In addition, the latency of SSVEPs elicited by attended stimuli was reduced by ∼4 msec. Next, we investigated the modulation of SSVEP amplitudes in a subset of studies where two different features were attended concurrently. Although most models assume that attentional effects of multiple features are combined additively, our results suggest that neuronal enhancement provided by concurrent attention is better described by multiplicative integration. Finally, we used the combined data set to demonstrate that the increase in trial-averaged SSVEP amplitudes with attention cannot be explained by increased synchronization of single-trial phases. Contrary to the prediction of the phase-locking account, the variance across trials of complex Fourier coefficients increases with attention, which is more consistent with boosting of a largely phase-locked signal embedded in non-phase-locked noise.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2019) 31 (8): 1173–1183.
Published: 01 August 2019
FIGURES
| View All (5)
Abstract
View articletitled, Top–Down Attention Is Limited Within but Not Between Feature Dimensions
View
PDF
for article titled, Top–Down Attention Is Limited Within but Not Between Feature Dimensions
In natural vision, processing of spatial and nonspatial features occurs simultaneously; however, the two types of attention in charge of facilitating this processing have distinct mechanisms. Here, we tested the independence of spatial and feature-based attention at different stages of visual processing by examining color-based attentional selection while spatial attention was focused or divided. Human observers attended to one or two of four fields of randomly moving dots presented in both left and right visual hemifields. In the focused attention condition, the target stimulus was defined both by color and location, whereas in the divided attention condition stimuli of the target color had to be attended in both hemifields. Sustained attentional selection was measured by means of steady-state visual evoked potentials elicited by each of the frequency-tagged flickering dot fields. Additionally, target and distractor selection was assessed with ERPs to these stimuli. We found that spatial and color-based attention independently modulated the amplitude of steady-state visual evoked potentials, confirming independent top–down influences on early visual areas. In contrast, P3 amplitudes elicited only by targets and distractors of the attended color were subject to space-based enhancement, suggesting increasing integration of spatial and feature-based selection over the course of perceptual processing.