Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Olaf B. Paulson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Martin Vestergaard, Kathrine Skak Madsen, William F. C. Baaré, Arnold Skimminge, Lisser Rye Ejersbo ...
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (9): 2135–2146.
Published: 01 September 2011
FIGURES
Abstract
View article
PDF
During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly throughout the childhood years, and several lines of evidence implicate the left fronto-parietal cortices and connecting fiber tracts in SWM processing. Here we report results from a study of 76 typically developing children, 7 to 13 years of age. We hypothesized that better SWM performance would be associated with increased fractional anisotropy (FA) in a left fronto-parietal network composed of the superior longitudinal fasciculus (SLF), the regional white matter underlying the dorsolateral pFC, and the posterior parietal cortex. As hypothesized, we observed a significant association between higher FA in the left fronto-parietal network and better SWM skills, and the effect was independent of age. This association was mainly accounted for by variability in left SLF FA and remained significant when FA measures from global fiber tracts or right SLF were included in the model. Further, the effect of FA in left SLF appeared to be mediated primarily by decreasing perpendicular diffusivity. Such associations could be related to individual differences among children in the architecture of fronto-parietal connections and/or to differences in the pace of fiber tract development. Further studies are needed to determine the contributions of intrinsic and experiential factors to the development of functionally significant individual differences in fiber tract structure.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (8): 1230–1239.
Published: 15 November 2002
Abstract
View article
PDF
Functional imaging studies have demonstrated that processing of man-made objects activate the left ventral premotor cortex, which is known to be concerned with motor function. This has led to the suggestion that the comprehension of man-made objects may rely on motor-based knowledge of object utilization (action knowledge). Here we show that the left ventral premotor cortex is activated during categorization of “both” fruit/vegetables and articles of clothing, relative to animals and nonmanipulable man-made objects. This observation suggests that action knowledge may not be important for the processing of man-made objects per se, but rather for the processing of manipulable objects in general, whether natural or man-made. These findings both support psycholinguistic theories suggesting that certain lexical categories may evolve from, and the act of categorization rely upon, motor-based knowledge of action equivalency, and have important implications for theories of category specificity. Thus, the finding that the processing of vegetables/fruit and articles of clothing give rise to similar activation is difficult to account for should knowledge representations in the brain be truly categorically organized. Instead, the data are compatible with the suggestion that categories differ in the weight they put on different types of knowledge.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (5): 763–774.
Published: 01 September 2000
Abstract
View article
PDF
Visual comparison between different-sized objects with respect to shape can be done by encoding one of the objects as a mental image, transforming the image to the size format of the other object, and then testing for a match (Bundesen, C., & Larsen, A. [1975]. Visual transformation of size. Journal of Experimental Psychology: Human Perception and Performance, 1 , 214-220). To identify the brain structures implicated in mental transformation of size, we measured the distribution of regional cerebral blood flow (rCBF) by positron emission tomography (PET) in 12 normal subjects who compared random stimulus patterns with respect to shape regardless of variations in size in a one-back match-to-sample paradigm. Each subject was PET-scanned 12 times during repetitive injections of H 2 15 O. In one condition (three scans), all stimulus patterns were small. In a second condition (three scans), all stimuli were large. In the third condition (six scans), the stimuli alternated between small and large. Mental transformation of size should occur in the alternating-size condition but not in the fixed-size conditions. As expected, behavioral measures (reaction time [RT], d ', β) were nearly the same for the two fixed-size conditions but mean RT was longer and d ' smaller in the alternating-size condition. Changes in rCBF specific to mental transformation of size were estimated by contrasting the alternating-size with the fixed-size conditions by use of statistical parametric mapping (SPM96) at a threshold of p < .05 corrected for multiple comparisons. The detected brain structures implicated in mental transformation of size were primarily located in the dorsal pathways, comprising structures in the occipital, parietal, and temporal transition zone (predominantly in the left hemisphere), posterior parietal cortex (bilaterally), area MT/V5 (left), and vermis (bilaterally). Contrasts between the two fixed-size conditions showed significant effects in only the occipital cortex.