Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Olivier Bertrand
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (3): 365–373.
Published: 01 March 2013
FIGURES
Abstract
View article
PDF
Neural representation of auditory regularities can be probed using the MMN, a component of ERPs generated in the auditory cortex by any violation of that regularity. Although several studies have shown that visual information can influence or even trigger an MMN by altering an acoustic regularity, it is not known whether audiovisual regularities are encoded in the auditory representation supporting MMN generation. We compared the MMNs elicited by the auditory violation of (a) an auditory regularity (a succession of identical standard sounds), (b) an audiovisual regularity (a succession of identical audiovisual stimuli), and (c) an auditory regularity accompanied by variable visual stimuli. In all three conditions, the physical difference between the standard and the deviant sound was identical. We found that the MMN triggered by the same auditory deviance was larger for audiovisual regularities than for auditory-only regularities or for auditory regularities paired with variable visual stimuli, suggesting that the visual regularity influenced the representation of the auditory regularity. This result provides evidence for the encoding of audiovisual regularities in the human brain.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (1): 158–172.
Published: 01 January 2007
Abstract
View article
PDF
Working memory involves the short-term storage and manipulation of information necessary for cognitive performance, including comprehension, learning, reasoning and planning. Although electroencephalogram (EEG) rhythms are modulated during working memory, the temporal relationship of EEG oscillations with the eliciting event has not been well studied. In particular, the dynamics of the neural network supporting memory processes may be best captured in induced oscillations, characterized by a loose temporal link with the stimulus. In order to differentiate induced from evoked functional processes, the present study proposes a time-frequency analysis of the 3 to 30 Hz EEG oscillatory activity in a verbal n-back working memory paradigm. Control tasks were designed to identify oscillatory activity related to stimulus presentation (passive task) and focused attention to the stimulus (detection task). Evoked theta activity (4–8 Hz) phase-locked to the visual stimulus was evidenced in the parieto-occipital region for all tasks. In parallel, induced theta activity was recorded in the frontal region for detection and n -back memory tasks, but not for the passive task, suggesting its dependency on focused attention to the stimulus. Sustained induced oscillatory activity was identified in relation to working memory in the theta and beta (15–25 Hz) frequency bands, larger for the highest memory load. Its late occurrence limited to nonmatched items suggests that it could be related to item retention and active maintenance for further task requirements. Induced theta and beta activities displayed respectively a frontal and parietal topographical distribution, providing further functional information on the fronto-posterior network supporting working memory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (11): 1691–1703.
Published: 01 November 2005
Abstract
View article
PDF
Animal and human studies have suggested that posterior temporal, parietal, and frontal regions are specifically involved in auditory spatial (location and motion) processing, forming a putative dorsal “where” pathway. We used scalp EEG and current density mapping to investigate the dynamics of this network in human subjects presented with a varying acoustic stream in a two-factor paradigm: spatial versus pitch variations, focused versus diverted attention. The main findings were: (i) a temporo-parieto-frontal network was activated during the whole duration of the stream in all conditions and modulated by attention; (ii) the left superior temporal cortex was the only region showing different activations for pitch and spatial variations. Therefore, parietal and frontal regions would be involved in task-related processes (attention and motor preparation), whereas the differential processing of acoustic spatial and object-related features seems to take place at the temporal level.