Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Olivier Houdé
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (1): 96–106.
Published: 01 January 2014
FIGURES
| View All (4)
Abstract
View article
PDF
Cognitive success at school and later in life is supported by executive functions including cognitive control (CC). The pFC plays a major role in CC, particularly the dorsal part of ACC or midcingulate cortex. Genes, environment (including school curricula), and neuroplasticity affect CC. However, no study to date has investigated whether ACC sulcal pattern, a stable brain feature primarily determined in utero, influences CC efficiency in the early stages of cognitive and neural development. Using anatomical MRI and three-dimensional reconstruction of cortical folds, we investigated the effect that ACC sulcal pattern may have on the Stroop score, a classical behavioral index of CC efficiency, in 5-year-old preschoolers. We found higher CC efficiency, that is, lower Stroop interference scores for both RTs and error rates, in children with asymmetrical ACC sulcal pattern (i.e., different pattern in each hemisphere) compared with children with symmetrical pattern (i.e., same pattern in both hemispheres). Critically, ACC sulcal pattern had no effect on performance in the forward and backward digit span tasks suggesting that ACC sulcal pattern contributes to the executive ability to resolve conflicts but not to the ability to maintain and manipulate information in working memory. This finding provides the first evidence that preschoolers' CC efficiency is likely associated with ACC sulcal pattern, thereby suggesting that the brain shape could result in early constraints on human executive ability.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (5): 730–736.
Published: 01 May 2006
Abstract
View article
PDF
Inhibition is a key executive function in adults and children for the acquisition and expression of cognitive abilities. Using event-related potentials in a priming adaptation of a Piaget-like numerical task taken from developmental psychology, we report a negative priming effect in adults measured just after the cognitive inhibition of a misleading strategy, the visuospatial length-equals-number bias. This effect was determined in the N200 information processing stage through increased N200 amplitude. We show here that for accuracy in numerical quantification, the adult brain still had to control the childlike cognition biases that are stored in a kind of “developmental memory.”
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (5): 721–728.
Published: 01 September 2000
Abstract
View article
PDF
What happens in the human brain when the mind has to inhibit a perceptual process in order to activate a logical reasoning process? Here, we use functional imaging to show the networks of brain areas involved in a deductive logic task performed twice by the same subjects, first with a perceptual bias and then with a logical response following bias-inhibition training. The main finding is a striking shift in the cortical anatomy of reasoning from the posterior part of the brain (the ventral and dorsal pathways) to a left-prefrontal network including the middle-frontal gyrus, Broca's area, the anterior insula, and the pre-SMA. This result indicates that such brain shifting is an essential element for human access to logical thinking.