Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Onur Güntürkün
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (7): 1198–1211.
Published: 01 July 2006
Abstract
View article
PDF
Two correlates of outcome processing in the orbitofrontal cortex (OFC) have been proposed in the literature: One hypothesis suggests that the lateral/medial division relates to representation of outcome valence (negative vs. positive), and the other suggests that the medial OFC maintains steady stimulus-outcome associations, whereas the lateral OFC represents changing (unsteady) outcomes to prepare for response shifts. These two hypotheses were contrasted by comparing the original with the inverted version of the Iowa Gambling Task in an event-related functional magnetic resonance imaging experiment. Results showed (1) that (caudo) lateral OFC was indeed sensitive to the steadiness of the outcomes and not merely to outcome valence and (2) that the original and the inverted tasks, although both designed to measure sensitivity for future outcomes, were not equivalent as they enacted different behaviors and brain activation patterns. Results are interpreted in terms of Kahneman and Tversky's prospect theory suggesting that cognitions and decisions are biased differentially when probabilistic future rewards are weighed against consistent punishments relative to the opposite scenario [Kahneman, D., & Tversky, A. Choices, values, and frames. American Psychologist, 39 , 341–350, 1984]. Specialized processing of unsteady rewards (involving caudolateral OFC) may have developed during evolution in support of goal-related thinking, prospective planning, and problem solving.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (3): 456–471.
Published: 01 March 2006
Abstract
View article
PDF
The primary source of top-down attentional control in object perception is the prefrontal cortex. This region is involved in the maintenance of goal-related information as well as in attentional selection and set shifting. Recent approaches have emphasized the role of top-down processes during elementary visual processes as exemplified in bistable vision where perception oscillates automatically between two mutually exclusive states. The prefrontal cortex might influence this process either by maintaining the dominant pattern while protecting it against the competing representation, or by facilitating perceptual switches between the two competing representations. To address this issue, we investigated reported perceptual reversals in patients with circumscribed lesions of the prefrontal cortex and healthy control participants in three experimental conditions: hold (maintaining the dominant view), speed (inducing as many perceptual switches as possible), and neutral (no intervention). Results indicated that although the patients showed normal switching rates in the neutral condition and were able to control perceptual switches in the hold condition as much as control subjects were, they were less able to facilitate reversals specifically in the speed condition. These results suggest that the prefrontal cortex is necessary to bias the selection of visual representations in accord with current goals, but is less essential for maintaining selected information active that is continuously available in the environment. As for attentional selection, the present results suggest that the prefrontal cortex initiates perceptual reversals by withdrawing top-down support from the dominant representation without (or prior to) boosting the suppressed view.