Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Orrin Devinsky
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (11): 2197–2214.
Published: 01 October 2021
FIGURES
| View All (6)
Abstract
View article
PDF
Models of reading emphasize that visual (orthographic) processing provides input to phonological as well as lexical–semantic processing. Neurobiological models of reading have mapped these processes to distributed regions across occipital–temporal, temporal–parietal, and frontal cortices. However, the role of the precentral gyrus in these models is ambiguous. Articulatory phonemic representations in the precentral gyrus are obviously involved in reading aloud, but it is unclear if the precentral gyrus is recruited during reading silently in a time window consistent with participation in phonological processing contributions. Here, we recorded intracranial electrophysiology during a speeded semantic decision task from 24 patients to map the spatio-temporal flow of information across the cortex during silent reading. Patients selected animate nouns from a stream of nonanimate words, letter strings, and false-font stimuli. We characterized the distribution and timing of evoked high-gamma power (70–170 Hz) as well as phase-locking between electrodes. The precentral gyrus showed a proportion of electrodes responsive to linguistic stimuli (27%) that was at least as high as those of surrounding peri-sylvian regions. These precentral gyrus electrodes had significantly greater high-gamma power for words compared to both false-font and letter-string stimuli. In a patient with word-selective effects in the fusiform, superior temporal, and precentral gyri, there was significant phase-locking between the fusiform and precentral gyri starting at ∼180 msec and between the precentral and superior temporal gyri starting at ∼220 msec. Finally, our large patient cohort allowed exploratory analyses of the spatio-temporal reading network underlying silent reading. The distribution, timing, and connectivity results place the precentral gyrus as an important hub in the silent reading network.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2017) 29 (5): 869–880.
Published: 01 April 2017
FIGURES
Abstract
View article
PDF
The differential contribution of medial-temporal lobe regions to verbal declarative memory is debated within the neuroscience, neuropsychology, and cognitive psychology communities. We evaluate whether the extent of surgical resection within medial-temporal regions predicts longitudinal verbal learning and memory outcomes. This single-center retrospective observational study involved patients with refractory temporal lobe epilepsy undergoing unilateral anterior temporal lobe resection from 2007 to 2015. Thirty-two participants with Engel Class 1 and 2 outcomes were included (14 left, 18 right) and followed for a mean of 2.3 years after surgery (±1.5 years). Participants had baseline and postsurgical neuropsychological testing and high-resolution T1-weighted MRI scans. Postsurgical lesions were manually traced and coregistered to presurgical scans to precisely quantify resection extent of medial-temporal regions. Verbal learning and memory change scores were regressed on hippocampal, entorhinal, and parahippocampal resection volume after accounting for baseline performance. Overall, there were no significant differences in learning and memory change between patients who received left and right anterior temporal lobe resection. After controlling for baseline performance, the extent of left parahippocampal resection accounted for 27% ( p = .021) of the variance in verbal short delay free recall. The extent of left entorhinal resection accounted for 37% ( p = .004) of the variance in verbal short delay free recall. Our findings highlight the critical role that the left parahippocampal and entorhinal regions play in recall for verbal material.