Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
P. N. Johnson-Laird
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2020) 32 (11): 2103–2116.
Published: 01 November 2020
FIGURES
Abstract
View article
PDF
A set of assertions is consistent provided they can all be true at the same time. Naive individuals could prove consistency using the formal rules of a logical calculus, but it calls for them to fail to prove the negation of one assertion from the remainder in the set. An alternative procedure is for them to use an intuitive system (System 1) to construct a mental model of all the assertions. The task should be easy in this case. However, some sets of consistent assertions have no intuitive models and call for a deliberative system (System 2) to construct an alternative model. Formal rules and mental models therefore make different predictions. We report three experiments that tested their respective merits. The participants assessed the consistency of temporal descriptions based on statements using “during” and “before.” They were more accurate for consistent problems with intuitive models than for those that called for deliberative models. There was no robust difference in accuracy between consistent and inconsistent problems. The results therefore corroborated the model theory.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2003) 15 (4): 559–573.
Published: 15 May 2003
Abstract
View article
PDF
The goal of this study was to investigate the neurocognitive processes of mental imagery in deductive reasoning. Behavioral studies yielded four sorts of verbal relations: (1) visuospatial relations that are easy to envisage both visually and spatially; (2) visual relations that are easy to envisage visually but hard to envisage spatially; (3) spatial relations that are hard to envisage visually but easy to envisage spatially; and (4) control relations that are hard to envisage both visually and spatially. In three experiments, visual relations slowed the process of reasoning in comparison with control relations, whereas visuospatial and spatial relations yielded inferences comparable to those of control relations. An experiment using functional magnetic resonance imaging showed that in the absence of any correlated visual input (problems were presented acoustically via headphones), all types of reasoning problems evoked activity in the left middle temporal gyrus, in the right superior parietal cortex, and bilaterally in the precuneus. In the prefrontal cortex, increased activity was found in the middle and inferior frontal gyri. However, only the problems based on visual relations also activated areas of the visual association cortex corresponding to V2. The results indicate that cortical activity during reasoning depends on the nature of verbal relations. All relations elicit mental models that underlie reasoning, but visual relations in addition elicit visual images. This account resolves inconsistencies in the previous literature.