Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Pablo Celnik
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (4): 636–648.
Published: 01 April 2013
FIGURES
| View All (4)
Abstract
View article
PDF
Posterior parietal cortex is thought to be involved in multisensory processes such as sensory weighting (how much different modalities are represented in sensory integration) and realignment (recalibrating the estimates given by unisensory inputs relative to each other, e.g., when viewing the hand through prisms). Sensory weighting and realignment are biologically independent but can be correlated such that the lowest-weighted modality realigns most. This is important for movement precision because it results in the brain's estimate of hand position favoring the more reliable (higher-weighted) modality. It is unknown if this interaction is an emergent property of separate neural pathways for weighting and realignment or if it is actively mediated by a common substrate. We applied disruptive TMS to the angular gyrus near the intraparietal sulcus (PGa) before participants performed a task with misaligned visual and proprioceptive information about hand position. Visuoproprioceptive weighting and realignment were unaffected. However, the relationship between weighting and realignment, found in control conditions, was absent after TMS in the angular gyrus location. This suggests that a specific region in the angular gyrus actively mediates the interaction between visuoproprioceptive weighting and realignment and may thus play a role in the decreased movement precision associated with posterior parietal lesions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (12): 3757–3766.
Published: 01 December 2011
FIGURES
Abstract
View article
PDF
Action observation (AO), observing another individual perform an action, has been implicated in several higher cognitive processes including forming basic motor memories. Previous work has shown that physical practice (PP) results in cortical motor representational changes, referred to as use-dependent plasticity (UDP), and that AO combined with PP potentiates UDP in both healthy adults and stroke patients. In humans, AO results in activation of the ventral premotor cortex (PMv), however, whether this PMv activation has a functional contribution to UDP is not known. Here, we studied the effects disruption of PMv has on UDP when subjects performed PP combined with AO (PP + AO). Subjects participated in two randomized crossover sessions measuring the amount of UDP resulting from PP + AO while receiving disruptive (1 Hz) TMS over the fMRI-activated PMv or over frontal cortex (Sham). We found that, unlike the sham session, disruptive TMS over PMv reduced the beneficial contribution of AO to UDP. To ensure that disruption of PMv was specifically interfering with the contribution of AO and not PP, subjects completed two more control sessions where they performed only PP while receiving disruptive TMS over PMv or frontal cortex. We found that the magnitude of UDP for both control sessions was similar to PP + AO with TMS over PMv. These findings suggest that the fMRI activation found in PMv during AO studies is functionally relevant to task performance, at least for the beneficial effects that AO exerts over motor training.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (2): 204–213.
Published: 01 February 2007
Abstract
View article
PDF
Interhemispheric inhibition (IHI) between motor cortical areas is thought to play a critical role in motor control and could influence manual dexterity. The purpose of this study was to investigate IHI preceding movements of the dominant and nondominant hands of healthy volunteers. Movement-related IHI was studied by means of a double-pulse transcranial magnetic stimulation protocol in right-handed individuals in a simple reaction time paradigm. IHI targeting the motor cortex contralateral (IHI c ) and ipsilateral (IHI i ) to each moving finger was determined. IHI c was comparable after the go signal, a long time preceding movement onset, in both hands. Closer to movement onset, IHI c reversed into facilitation for the right dominant hand but remained inhibitory for left nondominant hand movements. IHI i displayed a nearly constant inhibition with a trough early in the premovement period in both hands. In conclusion, our results unveil a more important modulation of interhemispheric interactions during generation of dominant than nondominant hand movements. This modulation essentially consisted of a shift from a balanced IHI at rest to an IHI predominantly directed toward the ipsilateral primary motor cortex at movement onset. Such a mechanism might release muscles from inhibition in the contralateral primary motor cortex while preventing the occurrence of the mirror activity in ipsilateral primary motor cortex and could therefore contribute to intermanual differences in dexterity.