Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Pamela M. Greenwood
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (11): 2139–2153.
Published: 01 November 2009
Abstract
View article
PDF
We investigated the relation between the two systems of visuospatial attention and working memory by examining the effect of normal variation in cholinergic and noradrenergic genes on working memory performance under attentional manipulation. We previously reported that working memory for location was impaired following large location precues, indicating the scale of visuospatial attention has a role in forming the mental representation of the target. In one of the first studies to compare effects of two single nucleotide polymorphisms (SNPs) on the same cognitive task, we investigated the neurotransmission systems underlying interactions between attention and memory. Based on our previous report that the CHRNA4 rs#1044396 C/T nicotinic receptor SNP affected visuospatial attention, but not working memory, and the DBH rs#1108580 G/A noradrenergic enzyme SNP affected working memory, but not attention, we predicted that both SNPs would modulate performance when the two systems interacted and working memory was manipulated by attention. We found the scale of visuospatial attention deployed around a target affected memory for location of that target. Memory performance was modulated by the two SNPs. CHRNA4 C/C homozygotes and DBH G allele carriers showed the best memory performance but also the greatest benefit of visuospatial attention on memory. Overall, however, the CHRNA4 SNP exerted a stronger effect than the DBH SNP on memory performance when visuospatial attention was manipulated. This evidence of an integrated cholinergic influence on working memory performance under attentional manipulation is consistent with the view that working memory and visuospatial attention are separate systems which can interact.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (10): 1611–1620.
Published: 01 October 2005
Abstract
View article
PDF
Cortical neurotransmitter availability is known to exert domain-specific effects on cognitive performance. Hence, normal variation in genes with a role in neurotransmission may also have specific effects on cognition. We tested this hypothesis by examining associations between polymorphisms in genes affecting cholinergic and noradrenergic neurotransmission and individual differences in visuospatial attention. Healthy individuals were administered a cued visual search task which varied the size of precues to the location of a target letter embedded in a 15-letter array. Cues encompassed 1, 3, 9, or 15 letters. Search speed increased linearly with precue size, indicative of a spatial attentional scaling mechanism. The strength of attentional scaling increased progressively with the number of C alleles (0, 1, or 2) of the alpha-4 nicotinic receptor gene C1545T polymorphism (n = 104). No association was found for the dopamine beta hydroxylase gene G444A polymorphism (n = 135). These findings point to the specificity of genetic neuromodulation. Whereas variation in a gene linked to cholinergic transmission systematically modulated the ability to scale the focus of visuospatial attention, variation in a gene governing dopamine availability did not. The results show that normal variation in a gene controlling a nicotinic receptor makes a selective contribution to individual differences in visuospatial attention.