Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-11 of 11
Patrik Vuilleumier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (5): 729–747.
Published: 31 March 2022
FIGURES
| View All (4)
Abstract
View article
PDF
Motivation is an important feature of emotion. By driving approach to positive events and promoting avoidance of negative stimuli, motivation drives adaptive actions and goal pursuit. The amygdala has been associated with a variety of affective processes, particularly the appraisal of stimulus valence that is assumed to play a crucial role in the generation of approach and avoidance behaviors. Here, we measured amygdala functional connectivity patterns while participants played a video game manipulating goal conduciveness through the presence of good, neutral, or bad monsters. As expected, good versus bad monsters elicited opposing motivated behaviors, whereby good monsters induced more approach and bad monsters triggered more avoidance. These opposing directional behaviors were paralleled by increased connectivity between the amygdala and medial brain areas, such as the OFC and posterior cingulate, for good relative to bad, and between amygdala and caudate for bad relative to good monsters. Moreover, in both conditions, individual connectivity strength between the amygdala and medial prefrontal regions was positively correlated with brain scores from a latent component representing efficient goal pursuit, which was identified by a partial least squares analysis determining the multivariate association between amygdala connectivity and behavioral motivation indices during gameplay. At the brain level, this latent component highlighted a widespread pattern of amygdala connectivity, including a dorsal frontoparietal network and motor areas. These results suggest that amygdala-medial prefrontal interactions captured the overall subjective relevance of ongoing events, which could consecutively drive the engagement of attentional, executive, and motor circuits necessary for implementing successful goal-pursuit, irrespective of approach or avoidance directions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2013) 25 (2): 258–272.
Published: 01 February 2013
FIGURES
| View All (5)
Abstract
View article
PDF
A crucial feature of socially adaptive behavior is the ability to recognize when our actions harm other individuals. Previous research demonstrates that dorsal mediofrontal cortex (dMFC) and anterior insula (AI) are involved in both action monitoring and empathy for pain. Here, we tested whether these regions could integrate monitoring of error agency with the representation of others' pain. While undergoing event-related fMRI, participants played a visual task in turns with a friend placed outside the scanner, who would receive painful stimulation in half of the error trials. Brain activity was enhanced in dMFC and AI for painful compared with nonpainful errors. Left AI and dorsolateral pFC also exhibited a significant interaction with agency and increased responses when painful errors were caused by oneself. We conclude that AI is crucial for integrating inferences about others' feeling states with information about action agency and outcome, thus generating an affective signal that may guide subsequent adjustment.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (12): 2768–2780.
Published: 01 December 2010
FIGURES
Abstract
View article
PDF
Spatial frequencies in an image influence visual analysis across a distributed, hierarchically organized brain network. Low spatial frequency (LSF) information may rapidly reach high-order areas to allow an initial coarse parsing of the visual scene, which could then be “retroinjected” through feedback into lower level visual areas to guide finer analysis on the basis of high spatial frequency (HSF). To test this “coarse-to-fine” processing scheme and to identify its neural substrates in the human brain, we presented sequences of two spatial-frequency-filtered scenes in rapid succession (LSF followed by HSF or vice versa) during fMRI and ERPs in the same participants. We show that for low-to-high sequences (but not for high-to-low sequences), LSF produces a first increase of activity in prefrontal and temporo-parietal areas, followed by enhanced responses to HSF in primary visual cortex. This pattern is consistent with retroactive influences on low-level areas that process HSF after initial activation of higher order areas by LSF.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2010) 22 (9): 2086–2107.
Published: 01 September 2010
FIGURES
| View All (7)
Abstract
View article
PDF
We recorded intracranial local field potentials from structurally intact human visual cortex during several face processing tasks in a patient before brain surgery. Intracranial local field potentials were measured from subdural electrodes implanted in a right fusiform region with face-sensitive activity and a more medial location in posterior parahippocampal gyrus with house-selective activity. This electrode implantation allowed us to compare neural responses with different facial properties within two adjacent but functionally distinct cortical regions. Five experiments were conducted to determine the temporal dynamics of perceptual (Experiments 1 and 5), emotional (Experiments 2 and 3), and social (Experiment 4) effects on face-specific responses in the right fusiform. Our findings showed an early negative deflection (N200) that primarily reflected category-selective perceptual encoding of facial information, whereas higher order effects of face individuation, emotional expression, and gaze direction produced selective modulations in the same face-specific region during a later time period (from 200 to 1000 msec after onset). These results shed new lights on the time course of face recognition mechanisms in human visual cortex and reveal for the first time anatomically overlapping but temporally distinct influences of identity or emotional/social factors on face processing in right fusiform gyrus, which presumably reflect top–down feedback effects from distant brain areas.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (7): 1255–1268.
Published: 01 July 2009
Abstract
View article
PDF
We investigated the functional characteristics of brain regions implicated in processing of speech melody by presenting words spoken in either neutral or angry prosody during a functional magnetic resonance imaging experiment using a factorial habituation design. Subjects judged either affective prosody or word class for these vocal stimuli, which could be heard for either the first, second, or third time. Voice-sensitive temporal cortices, as well as the amygdala, insula, and mediodorsal thalami, reacted stronger to angry than to neutral prosody. These stimulus-driven effects were not influenced by the task, suggesting that these brain structures are automatically engaged during processing of emotional information in the voice and operate relatively independent of cognitive demands. By contrast, the right middle temporal gyrus and the bilateral orbito-frontal cortices (OFC) responded stronger during emotion than word classification, but were also sensitive to anger expressed by the voices, suggesting that some perceptual aspects of prosody are also encoded within these regions subserving explicit processing of vocal emotion. The bilateral OFC showed a selective modulation by emotion and repetition, with particularly pronounced responses to angry prosody during the first presentation only, indicating a critical role of the OFC in detection of vocal information that is both novel and behaviorally relevant. These results converge with previous findings obtained for angry faces and suggest a general involvement of the OFC for recognition of anger irrespective of the sensory modality. Taken together, our study reveals that different aspects of voice stimuli and perceptual demands modulate distinct areas involved in the processing of emotional prosody.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2007) 19 (8): 1388–1406.
Published: 01 August 2007
Abstract
View article
PDF
Right hemisphere lesions often lead to severe disorders in spatial awareness and behavior, such as left hemispatial neglect. Neglect involves not only pathological biases in attention and exploration but also deficits in internal representations of space and spatial working memory. Here we designed a new paradigm to test whether one potential component may involve a failure to maintain an updated representation of visual locations across delays when a gaze-shift intervenes. Right hemisphere patients with varying severity of left spatial neglect had to encode a single target location and retain it across an interval of 2 or 3 sec, during which the target was transiently removed, before a subsequent probe appeared for a same/different location judgment. During the delay, gaze could have to shift to either side of the remembered location, or no gaze-shift was required. Patients showed a dramatic loss of memory for target location after shifting gaze to its right (toward their “intact” ipsilesional side), but not after leftward gaze-shifts. Such impairment arose even when the target initially appeared in the right visual field, before being updated leftward due to right gaze, and even when gaze returned to the screen center before the memory probe was presented. These findings indicate that location information may be permanently degraded when the target has to be remapped leftward in gaze-centric representations. Across patients, the location-memory deficit induced by rightward gaze-shifts correlated with left neglect severity on several clinical tests. This paradoxical memory deficit, with worse performance following gaze-shifts to the “intact” side of space, may reflect losses in gaze-centric representations of space that normally remap a remembered location dynamically relative to current gaze. Right gaze-shifts may remap remembered locations leftward, into damaged representations, whereas left gaze-shifts will require remapping rightward, into intact representations. Our findings accord with physiological data on normal remapping mechanisms in the primate brain but demonstrate for the first time their impact on perceptual spatial memory when damaged, while providing new insights into possible components that may contribute to the neglect syndrome.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2006) 18 (12): 2108–2129.
Published: 01 November 2006
Abstract
View article
PDF
People often remain “blind” to visual changes occurring during a brief interruption of the display. The processing stages responsible for such failure remain unresolved. We used event-related potentials to determine the time course of brain activity during conscious change detection versus change blindness. Participants saw two successive visual displays, each with two faces, and reported whether one of the faces changed between the first and second displays. Relative to blindness, change detection was associated with a distinct pattern of neural activity at several successive processing stages, including an enhanced occipital P1 response and a sustained frontal activity (CNV-like potential) after the first display, before the change itself. The amplitude of the N170 and P3 responses after the second visual display were also modulated by awareness of the face change. Furthermore, a unique topography of event-related potential activity was observed during correct change and correct no-change reports, but not during blindness, with a recurrent time course in the stimulus sequence and simultaneous sources in the parietal and temporo-occipital cortex. These results indicate that awareness of visual changes may depend on the attentional state subserved by coordinated neural activity in a distributed network, before the onset of the change itself.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (8): 1245–1260.
Published: 01 August 2005
Abstract
View article
PDF
Attention can enhance processing for relevant information and suppress this for ignored stimuli. However, some residual processing may still arise without attention. Here we presented overlapping outline objects at study, with subjects attending to those in one color but not the other. Attended objects were subsequently recognized on a surprise memory test, whereas there was complete amnesia for ignored items on such direct explicit testing; yet reliable behavioral priming effects were found on indirect testing. Event-related fMRI examined neural responses to previously attended or ignored objects, now shown alone in the same or mirror-reversed orientation as before, intermixed with new items. Repetition-related decreases in fMRI responses for objects previously attended and repeated in the same orientation were found in the right posterior fusiform, lateral occipital, and left inferior frontal cortex. More anterior fusiform regions also showed some repetition decreases for ignored objects, irrespective of orientation. View-specific repetition decreases were found in the striate cortex, particularly for previously attended items. In addition, previously ignored objects produced some fMRI response increases in the bilateral lingual gyri, relative to new objects. Selective attention at exposure can thus produce several distinct long-term effects on processing of stimuli repeated later, with neural response suppression stronger for previously attended objects, and some response enhancement for previously ignored objects, with these effects arising in different brain areas. Although repetition decreases may relate to positive priming phenomena, the repetition increases for ignored objects shown here for the first time might relate to processes that can produce “negative priming” in some behavioral studies. These results reveal quantitative and qualitative differences between neural substrates of long-term repetition effects for attended versus unattended objects.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (7): 1043–1057.
Published: 01 July 2005
Abstract
View article
PDF
Humans can identify individual faces under different viewpoints, even after a single encounter. We determined brain regions responsible for processing face identity across view changes after variable delays with several intervening stimuli, using event-related functional magnetic resonance imaging during a long-term repetition priming paradigm. Unfamiliar faces were presented sequentially either in a frontal or three-quarter view. Each face identity was repeated once after an unpredictable lag, with either the same or another viewpoint. Behavioral data showed significant priming in response time, irrespective of view changes. Brain imaging results revealed a reduced response in the lateral occipital and fusiform cortex with face repetition. Bilateral face-selective fusiform areas showed view-sensitive repetition effects, generalizing only from three-quarter to front-views. More medial regions in the left (but not in the right) fusiform showed repetition effects across all types of viewpoint changes. These results reveal that distinct regions within the fusiform cortex hold view-sensitive or view-invariant traces of novel faces, and that face identity is represented in a view-sensitive manner in the functionally defined face-selective areas of both hemispheres. In addition, our finding of a better generalization after exposure to a 3/4-view than to a front-view demonstrates for the first time a neural substrate in the fusiform cortex for the common recognition advantage of three-quarter faces. This pattern provides new insights into the nature of face representation in the human visual system.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2005) 17 (6): 859–873.
Published: 01 June 2005
Abstract
View article
PDF
We examined priming of visual search by repeated target location or color in two patients with left visual neglect and extinction, following strokes centered on the right inferior parietal lobe. Both patients, like the healthy controls we tested, showed intact priming, with performance speeded when either the location or color of a singleton target was repeated over successive trials in a standard search condition (Experiment 1). This was observed both from and to targets on the contralesional (left) side. Moreover, priming of search was still observed even when a return of fixation back to display-center was required between successive trials (Experiment 2). When briefer displays were used (Experiment 3), the patients often failed to detect left targets. This situation revealed an important dissociation: Whereas location priming only arose from preceding left targets that had been consciously detected, color priming (possibly arising within the intact ventral stream) did not depend on awareness of the preceding target. There was considerable color priming from missed targets. These findings demonstrate relatively intact priming of visual search by color and location in patients with right parietal damage, and also reveal that location priming may differ from color priming in requiring awareness.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2002) 14 (6): 875–886.
Published: 15 August 2002
Abstract
View article
PDF
Visual extinction after right parietal damage involves a loss of awareness for stimuli in the contralesional field when presented concurrently with ipsilesional stimuli, although contralesional stimuli are still perceived if presented alone. However, extinguished stimuli can still receive some residual on-line processing, without awareness. Here we examined whether such residual processing of extinguished stimuli can produce implicit and/or explicit memory traces lasting many minutes. We tested four patients with right parietal damage and left extinction on two sessions, each including distinct study and subsequent test phases. At study, pictures of objects were shown briefly in the right, left, or both fields. Patients were asked to name them without memory instructions (Session 1) or to make an indoor/outdoor categorization and memorize them (Session 2). They extinguished most left stimuli on bilateral presentation. During the test (up to 48 min later), fragmented pictures of the previously exposed objects (or novel objects) were presented alone in either field. Patients had to identify each object and then judge whether it had previously been exposed. Identification of fragmented pictures was better for previously exposed objects that had been consciously seen and critically also for objects that had been extinguished (as compared with novel objects), with no influence of the depth of processing during study. By contrast, explicit recollection occurred only for stimuli that were consciously seen at study and increased with depth of processing. These results suggest implicit but not explicit memory for extinguished visual stimuli in parietal patients.