Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Paul Dassonville
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2022) 34 (11): 2168–2188.
Published: 01 October 2022
FIGURES
| View All (6)
Abstract
View article
PDF
The ability to judge an object's orientation with respect to gravitational vertical relies on an egocentric reference frame that is maintained using not only vestibular cues but also contextual cues provided in the visual scene. Although much is known about how static contextual cues are incorporated into the egocentric reference frame, it is also important to understand how changes in these cues affect perception, since we move about in a world that is itself dynamic. To explore these temporal factors, we used a variant of the rod-and-frame illusion, in which participants indicated the perceived orientation of a briefly flashed rod (5-msec duration) presented before or after the onset of a tilted frame. The frame was found to bias the perceived orientation of rods presented as much as 185 msec before frame onset. To explain this postdictive effect, we propose a differential latency model, where the latency of the orientation judgment is greater than the latency of the contextual cues' initial impact on the egocentric reference frame. In a subsequent test of this model, we decreased the luminance of the rod, which is known to increase visual afferent delays and slow decision processes. This further slowing of the orientation judgment caused the frame-induced bias to affect the perceived orientation of rods presented even further in advance of the frame. These findings indicate that the brain fails to compensate for a mismatch between the timing of orientation judgments and the incorporation of visual cues into the egocentric reference frame.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2014) 26 (10): 2201–2209.
Published: 01 October 2014
FIGURES
| View All (4)
Abstract
View article
PDF
Visual cues contribute to the creation of an observer's egocentric reference frame, within which the locations and orientations of objects can be judged. However, these cues can also be misleading. In the rod-and-frame illusion, for example, a large tilted frame distorts the observer's sense of vertical, causing an enclosed rod to appear tilted in the opposite direction. To determine the brain region responsible for processing these spatial cues, we used TMS to suppress neural activity in the superior parietal lobule of healthy observers. Stimulation of the right hemisphere, but not the left, caused a significant reduction in rod-and-frame susceptibility. In contrast, a tilt illusion caused by a mechanism that does not involve a distortion of the observer's egocentric reference frame was unaffected. These results demonstrate that the right superior parietal lobule is actively involved in processing the contextual cues that contribute to our perception of egocentric space.