Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Paul E. Downing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2016) 28 (8): 1178–1193.
Published: 01 August 2016
FIGURES
| View All (9)
Abstract
View article
PDF
Research on visual face perception has revealed a region in the ventral anterior temporal lobes, often referred to as the anterior temporal face patch (ATFP), which responds strongly to images of faces. To date, the selectivity of the ATFP has been examined by contrasting responses to faces against a small selection of categories. Here, we assess the selectivity of the ATFP in humans with a broad range of visual control stimuli to provide a stronger test of face selectivity in this region. In Experiment 1, participants viewed images from 20 stimulus categories in an event-related fMRI design. Faces evoked more activity than all other 19 categories in the left ATFP. In the right ATFP, equally strong responses were observed for both faces and headless bodies. To pursue this unexpected finding, in Experiment 2, we used multivoxel pattern analysis to examine whether the strong response to face and body stimuli reflects a common coding of both classes or instead overlapping but distinct representations. On a voxel-by-voxel basis, face and whole-body responses were significantly positively correlated in the right ATFP, but face and body-part responses were not. This finding suggests that there is shared neural coding of faces and whole bodies in the right ATFP that does not extend to individual body parts. In contrast, the same approach revealed distinct face and body representations in the right fusiform gyrus. These results are indicative of an increasing convergence of distinct sources of person-related perceptual information proceeding from the posterior to the anterior temporal cortex.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2012) 24 (4): 975–989.
Published: 01 April 2012
FIGURES
| View All (9)
Abstract
View article
PDF
The discovery of mirror neurons—neurons that code specific actions both when executed and observed—in area F5 of the macaque provides a potential neural mechanism underlying action understanding. To date, neuroimaging evidence for similar coding of specific actions across the visual and motor modalities in human ventral premotor cortex (PMv)—the putative homologue of macaque F5—is limited to the case of actions observed from a first-person perspective. However, it is the third-person perspective that figures centrally in our understanding of the actions and intentions of others. To address this gap in the literature, we scanned participants with fMRI while they viewed two actions from either a first- or third-person perspective during some trials and executed the same actions during other trials. Using multivoxel pattern analysis, we found action-specific cross-modal visual–motor representations in PMv for the first-person but not for the third-person perspective. Additional analyses showed no evidence for spatial or attentional differences across the two perspective conditions. In contrast, more posterior areas in the parietal and occipitotemporal cortex did show cross-modal coding regardless of perspective. These findings point to a stronger role for these latter regions, relative to PMv, in supporting the understanding of others' actions with reference to one's own actions.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (12): 4122–4137.
Published: 01 December 2011
FIGURES
Abstract
View article
PDF
The occipito-temporal cortex is strongly implicated in carrying out the high-level computations associated with vision. In human neuroimaging studies, focal regions are consistently found within this broad region that respond strongly and selectively to faces, bodies, or objects. A notable feature of these selective regions is that they are found in pairs. In the posterior-lateral occipito-temporal cortex, focal selectivity is found for faces (occipital face area), bodies (extrastriate body area), and objects (lateral occipital). These three areas are found bilaterally and at close quarters to each other. Likewise, in the ventro-medial occipito-temporal cortex, three similar category-selective regions are found, also in proximity to each other: for faces (fusiform face area), bodies (fusiform body area), and objects (posterior fusiform). Here we review some of the extensive evidence on the functional properties of these areas with two aims. First, we seek to identify principles that distinguish the posterior-lateral and ventro-medial clusters of selective regions but that apply generally within each cluster across the three stimulus kinds. Our review identifies and elaborates several principles by which these relationships hold. In brief, the posterior-lateral representations are more primitive, local, and stimulus-driven relative to the ventro-medial representations, which in contrast are more invariant to visual features, global, and linked to the subjective percept. Second, because the evidence base of studies that compare both posterior-lateral and ventro-medial representations of faces, bodies, and objects is still relatively small, we seek to provoke more cross-talk among the research strands that are traditionally separate. We identify several promising approaches for such future work.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2011) 23 (7): 1765–1780.
Published: 01 July 2011
FIGURES
| View All (6)
Abstract
View article
PDF
A fundamental question for social cognitive neuroscience is how and where in the brain the identities and actions of others are represented. Here we present a replication and extension of a study by Kable and Chatterjee [Kable, J. W., & Chatterjee, A. Specificity of action representations in the lateral occipito-temporal cortex. Journal of Cognitive Neuroscience, 18, 1498–1517, 2006] examining the role of occipito-temporal cortex in these processes. We presented full-cue movies of actors performing whole-body actions and used fMRI to test for action- and identity-specific adaptation effects. We examined a series of functionally defined regions, including the extrastriate and fusiform body areas, the fusiform face area, the parahippocampal place area, the lateral occipital complex, the right posterior superior temporal sulcus, and motion-selective area hMT+. These regions were analyzed with both standard univariate measures as well as multivoxel pattern analyses. Additionally, we performed whole-brain tests for significant adaptation effects. We found significant action-specific adaptation in many areas, but no evidence for identity-specific adaptation. We argue that this finding could be explained by differences in the familiarity of the stimuli presented: The actions shown were familiar but the actors performing the actions were unfamiliar. However, in contrast to previous findings, we found that the action adaptation effect could not be conclusively tied to specific functionally defined regions. Instead, our results suggest that the adaptation to previously seen actions across identities is a widespread effect, evident across lateral and ventral occipito-temporal cortex.