Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Paul M. Dockree
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2018) 30 (11): 1630–1645.
Published: 01 November 2018
FIGURES
| View All (7)
Abstract
View article
PDF
The ability to sustain attention is integral to healthy cognition in aging. The right PFC (rPFC) is critical for maintaining high levels of attentional focus. Whether plasticity of this region can be harnessed to support sustained attention in older adults is unknown. We used transcranial direct current stimulation to increase cortical excitability of the rPFC, while monitoring behavioral and electrophysiological markers of sustained attention in older adults with suboptimal sustained attention capacity. During rPFC transcranial direct current stimulation, fewer lapses of attention occurred and electroencephalography signals of frontal engagement and early visual attention were enhanced. To further verify these results, we repeated the experiment in an independent cohort of cognitively typical older adults using a different sustained attention paradigm. Again, prefrontal stimulation was associated with fewer attentional lapses. These experiments suggest the rPFC can be manipulated in later years to increase top–down modulation over early sensory processing and improve sustained attention performance. This holds valuable information for the development of neurorehabilitation protocols to ameliorate age-related deficits in this capacity.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2009) 21 (1): 93–104.
Published: 01 January 2009
Abstract
View article
PDF
Disentangling the component processes that contribute to human executive control is a key challenge for cognitive neuroscience. Here, we employ event-related potentials to provide electrophysiological evidence that action errors during a go/no-go task can result either from sustained attention failures or from failures of response inhibition, and that these two processes are temporally and physiologically dissociable, although the behavioral error—a nonintended response—is the same. Thirteen right-handed participants performed a version of a go/no-go task in which stimuli were presented in a fixed and predictable order, thus encouraging attentional drift, and a second version in which an identical set of stimuli was presented in a random order, thus placing greater emphasis on response inhibition. Electrocortical markers associated with goal maintenance (late positivity, alpha synchronization) distinguished correct and incorrect performance in the fixed condition, whereas errors in the random condition were linked to a diminished N2–P3 inhibitory complex. In addition, the amplitude of the error-related negativity did not differ between correct and incorrect responses in the fixed condition, consistent with the view that errors in this condition do not arise from a failure to resolve response competition. Our data provide an electrophysiological dissociation of sustained attention and response inhibition.