Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Paul Van Hecke
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2004) 16 (4): 665–682.
Published: 01 May 2004
Abstract
View article
PDF
We used fMRI to directly compare the neural substrates of three-dimensional (3-D) shape and motion processing for realistic textured objects rotating in depth. Subjects made judgments about several different attributes of these objects, including 3-D shape, the 3-D motion, and the scale of surface texture. For all of these tasks, we equated visual input, motor output, and task difficulty, and we controlled for differences in spatial attention. Judgments about 3-D shape from motion involve both parietal and occipito-temporal regions. The processing of 3-D shape is associated with the analysis of 3-D motion in parietal regions and the analysis of surface texture in occipito-temporal regions, which is consistent with the different behavioral roles that are typically attributed to the dorsal and ventral processing streams.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2000) 12 (Supplement 2): 61–75.
Published: 01 November 2000
Abstract
View article
PDF
The human visual system is usually confronted with many different objects at a time, with only some of them reaching consciousness. Reaction-time studies have revealed two different strategies by which objects are selected for further processing: an automatic, efficient search process, and a conscious, so-called inefficient search [Treisman, A. (1991). Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception and Performance, 17 , 652-676; Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12 , 97-136; Wolfe, J. M. (1996). Visual search. In H. Pashler (Ed.), Attention. London: University College London Press]. Two different theories have been proposed to account for these search processes. Parallel theories presume that both types of search are treated by a single mechanism that is modulated by attentional and computational demands. Serial theories, in contrast, propose that parallel processing may underlie efficient search, but inefficient searching requires an additional serial mechanism, an attentional “spotlight” (Treisman, A., 1991) that successively shifts attention to different locations in the visual field. Using functional magnetic resonance imaging (fMRI), we show that the cerebral networks involved in efficient and inefficient search overlap almost completely. Only the superior frontal region, known to be involved in working memory [Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279 , 1347-1351], and distinct from the frontal eye fields, that control spatial shifts of attention, was specifically involved in inefficient search. Activity modulations correlated with subjects' behavior best in the extrastriate cortical areas, where the amount of activity depended on the number of distracting elements in the display. Such a correlation was not observed in the parietal and frontal regions, usually assumed as being involved in spatial attention processing. These results can be interpreted in two ways: the most likely is that visual search does not require serial processing, otherwise we must assume the existence of a serial searchlight that operates in the extrastriate cortex but differs from the visuospatial shifts of attention involving the parietal and frontal regions.