Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Paula Vieweg
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2023) 35 (9): 1493–1507.
Published: 01 September 2023
FIGURES
| View All (9)
Abstract
View article
PDF
Recent EEG studies have investigated basic principles of feature-based attention by means of frequency-tagged random dot kinematograms in which different colors are simultaneously presented at different temporal frequencies to elicit steady-state visual evoked potentials (SSVEPs). These experiments consistently showed global facilitation of the to-be-attended random dot kinematogram—a basic principle of feature-based attention. SSVEP source estimation suggested that posterior visual cortex from V1 to area hMT+/V5 is broadly activated by frequency-tagged stimuli. What is presently unknown is whether the feature-based attentional facilitation of SSVEPs is a rather unspecific neural response including all visual areas that follow the “on/off,” or whether SSVEP feature-based amplitude enhancements are driven by activity in visual areas most sensitive to a specific feature, such as V4v in the case of color. Here, we leverage multimodal SSVEP-fMRI recordings in human participants and a multidimensional feature-based attention paradigm to investigate this question. Attending to shape produced significantly greater SSVEP-BOLD covariation in primary visual cortex compared with color. SSVEP-BOLD covariation during color selection increased along the visual hierarchy, with greatest values in areas V3 and V4. Importantly, in area hMT+/V5, we found no differences between shape and color selection. Results suggest that SSVEP amplitude enhancements in feature-based attention is not an unspecific enhancement of neural activity in all visual areas following the “on/off.” These findings open new avenues to investigating neural dynamics of competitive interactions in specific visual areas sensitive to a certain feature in a more economical way and better temporal resolution compared with fMRI.
Journal Articles
Publisher: Journals Gateway
Journal of Cognitive Neuroscience (2021) 33 (4): 651–661.
Published: 01 April 2021
FIGURES
| View All (4)
Abstract
View article
PDF
In an explorative study, we investigated the time course of attentional selection shifts in feature-based attention in early visual cortex by means of steady-state visual evoked potentials (SSVEPs). To this end, we presented four flickering random dot kinematograms with red/blue, horizontal/vertical bars, respectively. Given the oscillatory nature of SSVEPs, we were able to investigate neural temporal dynamics of facilitation and inhibition/suppression when participants shifted attention either within (i.e., color to color) or between feature dimensions (i.e., color to orientation). Extending a previous study of our laboratory [Müller, M. M., Trautmann, M., & Keitel, C. Early visual cortex dynamics during top–down modulated shifts of feature-selective attention. Journal of Cognitive Neuroscience , 28 , 643–655, 2016] to a full factorial design, we replicated a critical finding of our previous study: Facilitation of color was quickest, regardless of the origin of the shift (from color or orientation). Furthermore, facilitation of the newly to-be-attended and inhibition/suppression of the then to-be-ignored feature is not a time-invariant process that occurs instantaneously, but a biphasic one with longer time delays between the two processes. Interestingly, inhibition/suppression of the to-be-ignored feature after the shifting cue had a much longer latency with between- compared to within-dimensional shifts (by about 130–150 msec). The exploratory nature of our study is reasoned by two limiting factors: (a) Identical to our precursor study, we found no attentional SSVEP amplitude time course modulation for orientation, and (b) the signal-to-noise ratio for single trials was too poor to allow for reliable statistical testing of the latencies that were obtained with running t tests of averaged data.